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ABSTRACT. The work of Nikulin and Agol, Belolipetsky, Storm, and Whyte shows that only finitely
many number fields may serve as the field of definition of an arithmetic hyperbolic reflection group.
An important problem posed by Nikulin is to enumerate these fields and their degrees. In this paper
we prove that in dimension 2 the degree of these fields is at most 7. More generally we prove that the
degree of the field of definition of the quaternion algebra associated to an arithmetic Fuchsian group
of genus 0 is at most 7, confirming a conjecture of Long, Maclachlan and Reid. We also obtain
upper bounds for the discriminants of these fields of definition, allowing for an enumeration which
should be useful for the classification of arithmetic hyperbolic reflection groups.

1. INTRODUCTION

A hyperbolic reflection group Γ is a discrete subgroup of the isometry group Isom(Hn) of hyper-
bolic n-space which is generated by reflections in the faces of a hyperbolic polyhedron. We say that
Γ is a maximal hyperbolic reflection group if there does not exist a reflection group Γ′ ⊂ Isom(Hn)
which properly contains Γ. The study of hyperbolic reflection groups has a long and interesting
history which goes back to the 19th century. For an overview of this history see for instance the
ICM reports of Vinberg [30] and Nikulin [21] and the references therein.

In this paper we will restrict our attention to hyperbolic reflection groups which are arithmetic.
The reader interested in a detailed account of arithmetic hyperbolic reflection groups is advised to
consult the recent survey of Belolipetsky [8]. In 1967 Vinberg [29] gave a criterion for a hyperbolic
reflection group to be arithmetic and introduced the notion of the ground field (or field of definition)
of such a group. Answering a longstanding open question, it was proven by Agol, Belolipetsky,
Storm and Whyte [2], and independently by Nikulin [23], that there are only finitely many conju-
gacy classes of arithmetic maximal hyperbolic reflection groups. This makes the classification of
such groups feasible, though in practice the quantitative bounds produced by [2] and [23] are large
enough to make such a classification unfeasible at present. We note that improved bounds were
obtained by Belolipetsky [5] if one restricts to arithmetic maximal hyperbolic reflection groups
which are congruence. Also note that partial progress towards a general classification has been
made in dimension n = 2 by Nikulin [22] (see also Allcock [3] and Mark [19]; for a more detailed
discussion of these classification results, see [8, p. 18] ).

In light of the difficulty of classifying all arithmetic maximal hyperbolic reflection groups it is
an important problem to enumerate the totally real number fields which may serve as the field
of definition of such a group. While finiteness of these fields of course follows from the afore-
mentioned results, boundedness of the degrees of these fields had already been proven by Long,
Maclachlan and Reid [16] in dimension 2, Agol [1] in dimension 3 and Nikulin [20, 23] in dimen-
sion n ≥ 4. (In [23] Nikulin explained that boundedness in dimensions 4 ≤ n ≤ 9 follows from
the corresponding result in dimensions 2 and 3.)
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We now discuss the best known quantitative bounds on the degree of the field of definition of an
arithmetic hyperbolic reflection group. In dimension 2 it was proven by Maclachlan [17] that this
degree is at most 11. In dimension 3 Belolipetsky and the author [7] showed that the degree is at
most 9, improving upon previous work of Belolipetsky [6]. It follows from work of Nikulin [24]
that the degree is at most 25 in all other dimensions. In this paper we produce an improved bound
in dimension 2.

Theorem 1.1. The degree over Q of the field of definition of an arithmetic hyperbolic reflection
group in dimension 2 is at most 7.

In order to prove Theorem 1.1 we prove a more general result (Theorem 1.2) regarding arith-
metic Fuchsian groups of genus 0 from which the theorem immediately follows. This more general
result suggests that the bound of 7 in Theorem 1.1 may well be optimal.

In their paper [16] Long, Maclachlan and Reid proved that there are only finitely many conju-
gacy classes in PSL2(R) of maximal arithmetic Fuchsian groups of genus 0. They additionally
gave a complete classification in the case that the field of definition (of the associated quaternion
algebra) is Q and gave examples with field of definition having degree 1, 2, . . . , 7. Based on the
extensive computations they conjectured [16, Conjecture 5.6] that the degree of the field of defini-
tion of the quaternion algebra associated to an arithmetic Fuchsian group of genus 0 is at most 7.
In this paper we confirm this conjecture.

Theorem 1.2. A positive integer n is the degree over Q of the field of definition of the quaternion
algebra associated to an arithmetic Fuchsian group of genus 0 if and only if n ∈ {1, 2, . . . , 7}.

The proof of Theorem 1.2 also provides explicit upper bounds on the discriminant of the field
of definition of an arithmetic Fuchsian group of genus 0 for each possible degree n ∈ {1, 2, . . . , 7}
(see Theorem 4.1). In degrees n ≤ 6 these upper bounds are strong enough that all of the relevant
totally real number fields have been enumerated and appear in existing databases of totally real
number fields of low degree (see for instance [15] and [32]).

We now give a brief outline of the methods used to prove Theorem 1.2. Broadly speaking, our
proof is an instance of what Belolipetsky [8] has termed the spectral method. To explain what this
means, let Γ be a maximal arithmetic Fuchsian group and λ1(Γ) be the first non-zero eigenvalue of
the Laplacian of Γ. By combining a lower bound for λ1(Γ) arising from deep results of Blomer and
Brumley [9] on the Ramanujan conjecture over number fields with an upper bound (due to Zograf
[33]) for λ1(Γ) · Area(H2/Γ) which grows linearly in the genus we obtain an upper bound on
the co-area of Γ. This method was used crucially by Long, Maclachlan and Reid in [16], and was
generalized to dimension 3 by Agol [1]. Equipped with an upper bound on the co-area of Γ, we turn
to Borel’s classification of maximal arithmetic Fuchsian groups and his formula for their co-areas
[10]. Borel’s formula can be difficult to work with directly, so we make extensive use of two lower
bounds for this co-area. The first bound is due the author and Voight [14] and is most useful when
strong bounds for the class number of the field of definition of Γ are known. The second bound
is due to Maclachlan [17] and takes into account the number of conjugacy classes of elements of
order 2 in Γ. Of particular relevance is the fact that Maclachlan’s bound may be employed in the
absence of strong class number bounds. Our proof of Theorem 1.2 makes extensive use of these
bounds, as well as the discriminant bounds of Odlyzko [25], along with a refinement due to Poitou
[26] which takes into account the presence of primes of small norm.
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2. ARITHMETIC FUCHSIAN GROUPS

In this section we will briefly review the definitions and basic properties of orders in quaternion
algebras and arithmetic Fuchsian groups. The reader desiring a more thorough treatment is advised
to consult [28, 18].

2.1. Quaternion algebras. Let k be a number field with ring of integersOk. A quaternion algebra
B over k is a central simple k-algebra of dimension 4. If ν is a place of k then Bν = B ⊗k kν is a
quaternion algebra over the local field kν . If Bν is a division algebra then we say that ν ramifies in
B. OtherwiseBν

∼= M2(kν) and we say that ν splits inB. The set of places of k (respectively, finite
places of k) which ramify in B is denoted by Ram(B) (respectively, Ramf (B)). The set Ram(B)
is a finite set of even cardinality. Conversely, given any finite set S of places of k of even cardinality
not containing any complex places there is a unique (up to isomorphism) quaternion algebraB over
k such that Ram(B) = S. Note that B is a division algebra if and only if Ram(B) 6= ∅.

Let k be a number field and B be a quaternion algebra over k. An order of B is a subring which
is also a finitely generatedOk-module containing a k-basis of B. An order is said to be maximal if
it is maximal with respect to inclusion. An order E ⊂ B is an Eichler order if there are maximal
orders O,O′ ⊂ B such that E = O ∩ O′. Let S be the (finite) set of finite primes of ν of k such
that Oν 6= O′ν . If ν ∈ Ramf (B) then the division algebra Bν contains a unique maximal order,
hence S ∩ Ramf (B) = ∅. It follows that if ν ∈ S then Bν

∼= M2(kν) and there exists a positive
integer nν such that Eν = Oν ∩ O′ν is conjugate to{(

a b
c d

)
: c ≡ 0 (mod πnνν )

}
,

where πν is a uniformizer for kν . The level N of E is defined to be the ideal

N =
∏
ν∈S

νnν .

Observe that an Eichler order E is a maximal order if and only if its level is trivial.

2.2. Arithmetic Fuchsian groups and their co-areas.

2.2.1. Definitions. Let k be a totally real number field andB be a quaternion algebra over k which
is split at a unique real place ν of k. Let E ⊂ B be an Eichler order and E1 be the multiplicative
subgroup of E∗ generated by elements of norm 1. Finally, let Γ1

E denote the image in PSL2(R)
of E1 under the identification Bν

∼= B ⊗k kν ∼= M2(R). The group Γ1
E is a discrete subgroup of

PSL2(R) which has finite co-area and which is co-compact if and only if B is a division algebra
(equivalently, B is not isomorphic to M2(Q)).

A Fuchsian group Γ is said to be arithmetic if it is commensurable with a group of the form Γ1
E .

We will call k the field of definition of Γ. Also note that the isomorphism class of B determines a
(wide) commensurability class of arithmetic Fuchsian groups in PSL2(R).

Let N(E) denote the normalizer in B∗ of E and by Γ′E the image of N(E) in PGL2(R). Let
ΓE := Γ′E∩PSL2(R). Then ΓE is a discrete subgroup of PSL2(R) which contains Γ1

E as a subgroup
of finite index. The following is an important theorem of Borel [10].

Theorem 2.1 (Borel). Every Fuchsian group in the commensurability class determined by B is
conjugate to a subgroup of a group of the form ΓE for some Eichler order E of square-free level.
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Recall that a subgroup Γ of SL2(Z) is a congruence subgroup if there is a positive integer N
such that Γ contains the principal congruence subgroup Γ[N ] of SL2(Z), which is defined as the
kernel of the reduction map

SL2(Z) −→ SL2(Z/NZ).

We now extend the notion of congruence to our cocompact setting.
Let O be a maximal order contained in B and I be an integral 2-sided O-ideal. The principal

congruence subgroup of Γ1
O of level I is defined to be the image in PSL2(R) of

O1(I) = {α ∈ O1 : α− 1 ∈ I}.
We will denote this group by Γ1

O(I). With this notation in place, we define an arithmetic Fuchsian
group to be congruence if it contains a group of the form Γ1

O(I).
In this paper it will be especially important that every maximal arithmetic Fuchsian group (i.e.,

group of the form ΓE) is congruence. This was proven by Long, Maclachlan and Reid [16, Lemma
4.2].

Proposition 2.2 (Long, Maclachlan and Reid). If E is an Eichler order then ΓE is a congruence
subgroup.

2.2.2. Coareas. Let k be a totally real number field of degree n, B a quaternion algebra over k
which is split at precisely one real place of k and E ⊂ B be an Eichler order of level N. Then

(2.1) Area(H2/Γ1
E) =

8πζk(2)d3/2

(4π2)n

∏
p∈Ramf (B)

(Np− 1)
∏
q|N

(Nq + 1),

where d is the absolute value of the discriminant of k, ζk(2) is the Dedekind zeta function of k
evaluated at s = 2 and Np, Nq denote the norms of the prime ideals p, q ⊂ Ok.

Let E be an Eichler order of square-free level N and recall that every maximal arithmetic Fuch-
sian group is of the form ΓE . In this paper we will on many occasions need to analyze the index
[ΓE : Γ1

E ]. Although a formula for this index was given by Borel [10], it will be more convenient
to make use of the following upper bound (derived by the author and Voight [14, Lemma 1.15 and
Prop. 1.17]).

Proposition 2.3 (Linowitz and Voight). The index [ΓE : Γ1
E ] satisfies

[ΓE : Γ1
E ] ≤ 2m+r+s+h2 ,

where r = # Ramf (B), s denotes the number of prime divisors of N, m denotes the rank (over
F2) of the group of totally positive units of Ok modulo squares, and h2 denotes the rank (over F2)
of the 2-part of the ideal class group of k. Moreover, if this bound is an equality then every prime
lying in Ramf (B) belongs to a square class in the strict class group of k.

While the above bound for [ΓE : Γ1
E ] is very useful when one has a good upper bound for the

2-part of the class group of k, an alternative bound was proven by Maclachlan [17, Theorem 2.2]
and is useful in the absence of strong class number bounds.

Theorem 2.4 (Maclachlan). The index [ΓE : Γ1
E ] is a power of 2 and satisfies

[ΓE : Γ1
E ] ≤ `2 · 2r+2s′ ,

where r = # Ramf (B), s′ is the number of non-dyadic prime divisors of N and `2 is the number
of conjugacy classes of elements of order 2 in ΓE .
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We conclude this section by formally stating the following consequence of Borel’s volume for-
mula [10].

Theorem 2.5 (Borel). Let k be a totally real number field, B a quaternion algebra over k which
is split at precisely one real place of k, and O ⊂ B a maximal order. Of the arithmetic Fuchsian
groups in the commensurability class defined by (k,B), the group ΓO has minimal co-area.

3. A BOUND ON THE CO-AREA OF A CONGRUENCE ARITHMETIC FUCHSIAN GROUP OF
GENUS 0

In this brief section we will derive an upper bound for the co-area of a congruence arithmetic
Fuchsian group of genus 0. Our derivation closely follows that of Long, Maclachlan and Reid [16,
p. 7], who showed that such a group has co-area at most 128π

3
.

Theorem 3.1. If Γ is a congruence arithmetic Fuchsian group of genus 0 then

Area(H2/Γ) < 34π.

Theorem 3.1 is an immediate consequence of the following upper and lower bounds for the first
non-zero eigenvalue λ1(Γ) of the Laplacian of Γ. We note that the upper bound is due to Zograf
[33], while the lower bound follows from the Jacquet-Langlands correspondence together with
bounds on the Ramanujan conjecture over number fields due to Blomer and Brumley [9].

Theorem 3.2 (Zograf). Let Γ be a Fuchsian group of finite co-area and denote by g(Γ) the genus
of H2/Γ. If Area(H2/Γ) > 32π then

λ1(Γ) <
8π(g(Γ) + 1)

Area(H2/Γ)
.

Theorem 3.3 (Blomer and Brumley). If Γ is a congruence arithmetic Fuchsian group then

λ1(Γ) ≥ 975

4096
.

4. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2. As was mentioned in the introduction, Long, Maclachlan
and Reid [16] produced, for every n ∈ {1, . . . , 7}, an arithmetic Fuchsian group of genus 0 for
which the field of definition of the associated quaternion algebra has degree n. Moreover, Maclach-
lan [17, Theorem 1.1] has shown that if k is the field of definition of an arithmetic Fuchsian group
of genus 0 then [k : Q] ≤ 11, hence we must show that if n ∈ {8, . . . , 11} and k is a totally real
number field of degree n then k is not the defining field of an arithmetic Fuchsian group of genus
0. As our method of proof varies little from case to case we will give a complete proof when n = 8
(the most difficult case) and leave the remaining cases to the reader.

Let k be a totally real number field of degree n and B be a quaternion algebra defined over k
which is split at precisely one real place of k. Suppose that Γ is an arithmetic Fuchsian group of
genus 0 which has invariant trace field k and invariant quaternion algebra B. Let E ⊂ B be an
Eichler order of square-free level N for which Γ is contained in the maximal arithmetic Fuchsian
group ΓE . Then ΓE must also have genus 0 and is congruence by Proposition 2.2. We now conclude
from Theorem 3.1 that Area(H2/ΓE) < 34π.
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Let ΓE have signature (0;m1, . . . ,mt) so that

34π > Area(H2/ΓE) = 2π

(
−2 +

t∑
i=1

(1− 1

mi

)

)
,

hence `2(S) ≤ 38. We now conclude from Theorem 2.4, equation (2.1), and the trivial bound
ζk(2) ≥ 1 that the root discriminant δ := d1/n of k satisfies δ < 27.716.

We will henceforth assume that n = 8. We now employ a refinement of the Odlyzko discrim-
inant bounds in order to show that the class number h of k satisfies h ≤ 3. These bounds were
originally developed by Odlyzko [25], though they were later refined by Poitou [26] so as to take
into account the existence of primes of small norm. The bounds were subsequently refined again,
by Brueggeman and Doud [12]. In particular, the precise formula for the Odlyzko-Poitou bounds
which we will employ throughout the remainder of this paper is the one appearing in [12, Theorem
2.4]. This formula may easily be computed using a computer algebra system like SAGE [27].

If the class number h of k satisfies h ≥ 4 then the Hilbert class field H of k is a totally real
field of degree at least 32 and root discriminant δ < 27.716. The Odlyzko-Poitou bounds imply
that the root discriminant of H must be at least 28.111, a contradiction which proves that h ≤ 3.
Denote by h2 the rank over F2 of the 2-part of the ideal class group of k. As 2h2 ≤ h we deduce
that h2 ≤ 1. In fact we will show that h2 = 0. To prove this we begin by letting w2 denote the
number of primes of Ok having norm 2. Then w2 ≤ 8, and observing the Euler product expansion
of ζk(2) we see that ζk(2) ≥ (4/3)w2 . Our bound Area(H2/ΓE) < 34π, along with Theorem 2.4
and equation (2.1), now implies that

(4.1) δ < 17.463 · 1.036w2 .

Recall that we have shown that h2 ≤ 1. Suppose that h2 = 1. As 2h2 | h and h ≤ 3 we see that
h = 2. Thus the Hilbert class field H of k (which must be totally real and have root discriminant
δ) is a quadratic extension of k. Moreover, the w2 primes of norm 2 in k either split completely or
else are inert in H/k. In particular H has at least w2 primes with norm at most 4. The table below
gives the numerical bound for δ corresponding to each value of w2 in {0, . . . , 8} that one gets from
equation (4.1), along with the Odlyzko-Poitou bound for the root discriminant of a totally real field
of degree 16 and at least w2 primes of norm at most 4.

(4.2)

w2 δ < Odlyzko-Poitou

0 17.464 18.731
1 18.092 20.024
2 18.743 21.407
3 19.418 22.885
4 20.117 24.465
5 20.841 26.154
6 21.592 28.764
7 22.369 31.038
8 23.174 33.455

From (4.2) we see that for each value of w2 the upper bound for δ which arises from the in-
equality δ < 17.463 · 1.036w2 is strictly less than the lower bound for δ which we obtain from the
Odlyzko-Poitou root discriminant bounds. This contradiction shows that h2 6= 1, hence h2 = 0 as
claimed.
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Let m denote the rank over F2 of the group of totally positive units of Ok modulo squares. We
will now employ the upper bound for the index [ΓE : Γ1

E ] given in Proposition 2.3. First notice that
if p, q are primes of Ok with Np > 2 then we have

Np− 1

2
,
Nq + 1

2
≥ 1,

hence by (2.1) and Proposition 2.3 we have

(4.3) δ < 13.07994 · 1.05947m+r2 · 0.97632w2 ,

where r2 denotes the number of primes of norm 2 contained in Ramf (B). Here we have once
again used the bound ζk(2) ≥ (4/3)w2 .

We will now show that δ < 17. We begin by noting that a theorem of Armitage and Fröhlich [4]
shows that h2 ≥ m − bn/2c = m − 4, hence m ≤ 4 as we have already concluded that h2 = 0.
Therefore m ≤ 4 and r2 ≤ w2 ≤ 8. (We note that the inequality r2 ≤ w2 follows directly from
the definitions of r2 and w2 and the bound w2 ≤ 8 follows from the fact that a number field of
degree 8 has at most 8 primes of norm 2.) Suppose that m = 4. If w2 ≥ 3 then one may check that
the upper bound for δ given by (4.3) is strictly less than the lower bound for δ given by applying
the Odlyzko-Poitou bounds (see also the supplementary tables at [13]) to k, a totally real field of
degree 8 containing at least w2 primes of norm 2. Thus w2 ≤ 2 and δ ≤ 17.633 by (4.3). If w2 = 2
and r2 = 1 then we see that δ < 16.644. If w2 = r2 = 2, then Ramf (B) must contain a prime of
norm greater than 2 as B must ramify at an odd number of finite primes (since B is ramified at 7
real places of k and # Ram(B) is even). If this prime has norm at least 4 then δ < 16.643 by (2.1)
and Proposition 2.3. If this prime has norm 3 then the Euler product expansion of ζk(2) gives us
the improved bound ζk(2) ≥ (4/3)w2(9/8), which implies that δ < 17.460. The Odlyzko-Poitou
bounds imply that a totally real field of degree 8 with two primes of norm 2 and a prime of norm 3
has root discriminant at least 17.470, a contradiction. We conclude that either w2 = 2 and r2 = 0
or else w2 ≤ 1. In the former case (4.3) implies that δ < 15.709, hence we may assume w2 ≤ 1.
Maclachlan [17, p. 115] has shown that if Ramf (B) consists of a single prime then k must contain
a prime of norm 2 not in Ramf (B). This shows that we cannot have w2 = r2 = 1 with Ramf (B)
consisting of a single prime of norm 2. An examination of the remaining cases shows that we
always have δ < 17. This shows that δ < 17 when m = 4. The same arguments (employed in the
same manner) imply that δ < 17 in the remaining cases when m ∈ {0, 1, 2, 3}.

To conclude, we note that all totally real number fields of degree 8 with root discriminant less
than 17 have been enumerated and appear in the LMFDB database [15]. There are 920 such fields.
Using the computer algebra system MAGMA [11] we find that none of these fields support a
quaternion algebra which is split at a unique real place and which contains a maximal order O for
which Area(H2/ΓO) < 34π, subject to the caveat that if # Ramf (B) = 1 then k has a prime of
norm 2 not lying in Ramf (B) (a necessary condition for the existence of an arithmetic Fuchsian
group of genus 0 by Maclachlan [17, p. 115]). In light of Theorem 2.5 and Theorem 3.1 this shows
that no totally real field of degree 8 is the field of definition of the quaternion algebra associated to
an arithmetic Fuchsian group of genus 0. As was mentioned above, the proofs for degrees 9, 10, 11
are similar (though easier) and left to the reader. We simply remark that in degrees 10 and 11 one
additionally uses the fact that no totally real field of degree at least 10 has root discriminant less
than 14 (see [31]).

In this manner we also obtain upper bounds on δ for n ≤ 7. We list these bounds below in (4.4).
For the convenience of the reader we also list the bound ∆ such that all totally real number fields
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of degree n with root discriminant less than ∆ have been enumerated ([15] and [32]). Note that
for n ≤ 6 our upper bound for δ is always less than the corresponding value of ∆. It follows that
in these degrees, the field of definition of an arithmetic Fuchsian group of genus 0 lies in a finite
(though extremely long) list of fields which may be obtained from existing databases of number
fields of low degree. In these cases (n ≤ 6) we additionally give the number of totally real fields
of degree n with root discriminant less than our upper bound for δ. This information appears in the
column marked “# fields”.

(4.4)

n δ < ∆ # fields

2 78.130 1000 1859
3 45.265 300 4422
4 34.453 100 19298
5 29.249 35 24748
6 26.224 28 45616
7 18.512 15.5 > 301

We summarize this discussion as follows.

Theorem 4.1. The root discriminant of the field of definition k of the quaternion algebra associated
to an arithmetic Fuchsian group of genus 0 is bounded above by the entry corresponding to n =
[k : Q] in (4.4).
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