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11.2. Vignéras’ examples cannot arise from Sunada’s method 56
References 57



THE SPECTRAL GEOMETRY OF ARITHMETIC HYPERBOLIC 3-MANIFOLDS 3

1. Introduction

These notes are based on a series of lectures given at the Universidad Nacional de
Córdoba - Argentina during the fall of 2015. Their goal is to introduce the reader,
in as gentle a manner as possible, to arithmetic hyperbolic 3-manifolds and their
spectral theory. The focal point of the text is the manner in which the geometry of
arithmetic hyperbolic 3-manifolds can be studied by means of powerful techniques
from algebra and number theory, and conversely the manner in which the algebraic
and number theoretic invariants of an arithmetic hyperbolic 3-manifold are reflected
in its geometry.

The prerequisites for these notes were intentionally kept to a minimum, and for
the most part we develop the necessary tools as they arise. A basic knowledge of
hyperbolic geometry would of course be helpful given that the purpose of the notes is
to study the geometry of certain hyperbolic manifolds, though is strictly speaking not
necessary as all of the background needed is reviewed in Section 2. One of the central
themes of these notes is that arithmetic hyperbolic 3-manifolds can be viewed as
arising naturally in algebraic number theory. In particular we will associate to every
hyperbolic 3-manifold of finite volume a number field (called the invariant trace field)
and a quaternion algebra defined over said number field (the invariant quaternion
algebra). These objects will be studied extensively throughout the notes, and as such
we assume that the reader is familiar with the basic concepts of algebraic number
theory; i.e., the arithmetic of prime ideals in number fields, the structure of the group
of units of a number field and the theory of local fields. We do not assume any
previous exposure to quaternion algebras, and will review all of the needed theory in
Section 3.

We now discuss the content of these notes. As was mentioned above, Section 2
treats the terminology and background from hyperbolic geometry that we will be
making use of. As the reader is assumed to be familiar with much of this material,
our treatment is necessarily terse.

In Section 3 we introduce quaternion algebras and the techniques from non-commutative
algebra which are crucial to their study (e.g., Wedderburn’s Structure Theorem, the
Skolem-Noether Theorem, etc). We will discuss the structure of quaternion division
algebras over number fields and their completions, culminating with a statement of
the classification of quaternion algebras over number fields in terms of their ramifica-
tion data.

Section 4 defines the invariant trace field and invariant quaternion algebra of a
hyperbolic 3-manifold of finite volume, perhaps the two most important arithmetic
invariants discussed in the text. We show that these are commensurability class
invariants. As a first application of this theory we determine the invariant trace field
and quaternion algebra of the Weeks manifold, the closed hyperbolic 3-manifold of
smallest volume, and use this knowledge to prove that it contains no immersed totally
geodesic surfaces.

In Section 5 the reader is introduced to orders in quaternion algebras defined over
number fields and p-adic fields. The goal is to develop the theory needed to define
arithmetic hyperbolic 3-manifolds, the subject of Section 6.

Section 6 defines arithmetic hyperbolic 3-manifolds and Kleinian groups. In fact
they are defined in three different ways. The first definition employs a construction
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that naturally generalizes the construction of the Fuchsian group SL2(Z) from the
maximal order M2(Z) in the quaternion algebra M2(Q). Owing to the explicitness of
this construction, we are able to easily show that certain aspects of the topology of an
arithmetic hyperbolic 3-manifold can be deduced from the structure of the associated
quaternion algebra; e.g., compactness. Our second characterization of arithmeticity
shows that a hyperbolic 3-manifold is arithmetic precisely when its invariant trace field
and quaternion algebra satisfy certain arithmetic properties. This characterization is
then used to show that the Weeks manifold is arithmetic. Our final characterization
is due to Margulis and shows that a finite volume hyperbolic 3-manifold is arithmetic
precisely when it has infinite index inside of its commensurator.

Having defined arithmetic hyperbolic 3-manifolds and their number theoretic in-
variants, the notes now focus on applications to spectral geometry. In Section 7
we prove that compact arithmetic hyperbolic 3-manifolds which are isospectral are
necessarily commensurable, a result due to Reid [31].

Section 8 is in many ways the highlight of the notes and gives a (somewhat mod-
ernized) exposition of Vignéras’ construction of isospectral arithmetic hyperbolic 3-
manifolds [35]. In our exposition this construction is based upon a theorem of Chin-
burg and Friedman concerning the embedding theory of maximal orders in quaternion
algebras defined over number fields. Although the proof of this result may be taken
as a black box, it is given in Section 9.

The remainder of the notes is devoted to applications of Vignéras’ construction.
In Section 10 we use Borel’s formula for the volume of an arithmetic hyperbolic 3-
manifold to show that Vignéras’ method never produces more than cV 2 isospectral
non-isometric hyperbolic 3-manifolds, where c > 0 is a constant and V is the volume
of the manifolds in question. Section 11 recalls Sunada’s construction of isospectral
Riemannian manifolds. This method reduces the problem of constructing isospectral
manifolds to a problem in finite group theory and is responsible for the vast majority
of known examples of isospectral non-isometric Riemannian manifolds (though there
are several notable exceptions). The main result of this section is that Vignéras’
method is incompatible with Sunada’s method in the sense that the latter cannot be
used to construct Vignéras’ examples.

The Magma [5] computer algebra system provides a large number of tools for study-
ing quaternion algebras defined over fields of arithmetic interest. Throughout these
notes we provide the code needed for the reader to calculate the quaternion alge-
bras of certain explicitly defined hyperbolic 3-manifolds and covolumes of arithmetic
Kleinian groups such as the Bianchi groups.

Much of the exposition in these notes, in particular in the early chapters where
invariant trace fields, invariant quaternion algebras and arithmetic hyperbolic 3-
manifolds are first defined, was taken from the excellent text of Maclachlan and Reid,
The arithmetic of hyperbolic 3-manifolds [24]. Indeed, in many ways these notes were
written to serve as a more streamlined version of [24] for readers with a particular
interest in applications to spectral geometry.
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2. Hyperbolic manifolds

As was mentioned in the introduction, these notes are intended for an audience fa-
miliar with the geometry of hyperbolic 3-manifolds and Kleinian groups and is meant
to introduce arithmetic hyperbolic 3-manifolds and explore some of the distinguish-
ing features of their geometry. In this section we will provide a rapid introduction to
hyperbolic 3-manifolds and Kleinian groups. Our exposition is based on [24, Chap-
ter 1] and [32]. As the reader is expected to already be familiar with much of this
material, we will often omit proofs. There are a number of wonderful book length
references which the reader interested in a more detailed treatment may consult. See
for instance [3], [25] and [26].

2.1. Hyperbolic 3-space. We begin by defining hyperbolic 3-space, which will al-
ways be regarded in the upper-half space model

H3 = {(z, t) : z ∈ C, t > 0}

and as being equipped with the metric

ds2 =
|dz|2 + dt

t2
.

In this manner H3 is the unique connected, simply-connected 3-dimensional Riemann-
ian manifold with constant sectional curvature −1. We will view the Riemann sphere
Ĉ = C ∪ {∞} as the sphere at infinity corresponding to t = 0. Geodesics in H3 are

vertical Euclidean lines or semicircles orthogonal to Ĉ.

2.2. Kleinian groups. A Kleinian group is a discrete subgroup of orientation pre-
serving isometries of hyperbolic 3-space H3. It was already known to Poincaré that
the group Isom+(H3) of all orientation preserving isometries of hyperbolic 3-space
is isomorphic to PSL2(C), hence a Kleinian group is simply a discrete subgroup of
PSL2(C).

While there are many excellent reasons to study Kleinian groups, our interest in
them is due primarily to the following:

Theorem 2.1. If M is an orientable hyperbolic 3-manifold then M is isometric to
H3/Γ where Γ is a torsion-free Kleinian group.

The elements of PSL2(C) induce biholomorphic maps of Ĉ given by fractional linear
transformations: (

a b
c d

)
7−→

(
z 7→ az + b

cz + d

)
.

These fractional linear transformations of Ĉ extend to maps of H3 via the Poincaré
extension. The Poincaré extension can be described geometrically as follows. Every
fractional linear transformation of Ĉ may be decomposed into a composition of inver-
sions in circles and lines of Ĉ. Given such a circle or line, there is a unique hemisphere
or plane in H3 which is orthogonal to Ĉ and meets Ĉ precisely at that circle or line.
The Poincaré extension is simply the corresponding composition of inversions in H3.
More concretely, the extension is given by the formula:
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(
a b
c d

)
7−→

(
(z, t) 7→

(
(az + b)(cz + d) + act2

|cz + d|2 + |c|2t2
,

t

|cz + d|2 + |c|2t2

))
.

For example, the translation z 7→ z + 1 extends to the map (z, t) 7→ (z + 1, t).

2.3. Classification of isometries. Let γ be a non-identity element of PSL2(C). By
examining the potential Jordan Normal Forms of γ, we see that γ must be conjugate
to the image in PSL2(C) of one of the following class representatives:(

1 1
0 1

)
,

(
λ 0
0 λ−1

)
.

We will refer to the isometry of Ĉ induced by the class representative of γ as a

canonical form. Consider first the class representative

(
1 1
0 1

)
. Its canonical form

is the translation z 7→ z+1. The canonical form of the class representative

(
λ 0
0 λ−1

)
,

on the other hand, is z 7→ κz where κ = λ2 is the isometry’s multiplier.
Observe that if z is the fixed point of an isometry γ and γ′ ∈ PSL2(C) then γ′(z) is

the fixed point of γ′γγ′−1. From this we may conclude that a non-trivial element γ of

PSL2(C) has one fixed point in Ĉ if its class representative is

(
1 1
0 1

)
and two fixed

points otherwise. In the case that γ has two fixed points there is always a unique
geodesic in H3 joining the points. We call this geodesic the axis of γ and denote it
by Aγ. From this discussion we may conclude the following.

Lemma 2.2. If the isometry associated to an element γ ∈ PSL2(C) has at least 3
fixed points then γ = Id.

We are now ready to give the classification of isometries in γ ∈ PSL2(C). We will
do so in terms of the trace of γ, which is invariant under conjugation. Because we are
working within PSL2(C), where traces are only defined up to a sign, it is convenient
to state our classification in terms of tr2 γ.

• γ is elliptic if tr2 γ ∈ R and tr2 γ < 4.
• γ is parabolic if tr2 γ = 4.
• γ is loxodromic if tr2 γ ∈ C \ [0, 4].
• γ is hyperbolic if tr2 γ ∈ R and γ is loxodromic.

When γ is elliptic its multiplier κ satisfies |κ| = 1. When γ is hyperbolic κ ∈ R>0

and γ is loxodromic precisely when |λ| 6= 1. Observe that this already implies that
whenever γ induces a finite order isometry it is necessarily the case that γ is elliptic.

Example 2.3. The above discussion allows us to give our first examples of Kleinian
groups: the cyclic groups 〈γn : n ∈ Z〉 where γ ∈ PSL2(C). These groups are infinite
unless γ is elliptic of finite order. Note as well that every element of these groups has
the same set of fixed points in Ĉ.

These examples motivate the following easy lemma.

Lemma 2.4. Let Γ be a Kleinian group with γ1, γ2 ∈ Γ. Then γ1, γ2 either have all
of their fixed points in common or none at all.
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Proof. Clearly we may assume that at least one of γ1, γ2 is not parabolic, as the
lemma is vacuously true otherwise. Suppose that γ1, γ2 have a single fixed point
in common and normalize so that this fixed point is ∞. The lemma now follows
from the observation that the sequence of elements given by γ−n1 γ2γ

n
1 contradicts the

discreteness of Γ. As an example of how this argument is carried suppose that γ1 is
loxodromic and γ2 is parabolic. By normalizing and possibly replacing γ1 by γ−1

1 , it
suffices to assume that γ2 fixes∞, that the two fixed points of γ1 are {0,∞} and that

γ1 =

(
λ 0
0 λ−1

)
, |λ| > 1, γ2 =

(
1 c
0 1

)
, c ∈ C.

We now compute that

γ−n1 γ2γ
n
1 =

(
1 cλ−2n

0 1

)
.

Therefore γ−n1 γ2γ
n
1 −→ Id, which contradicts the discreteness of Γ. �

Lemma 2.4 allows us to deduce that if two loxodromic isometries do not have
disjoint axes then their axes in fact coincide, and that a loxodromic element can
never share a fixed point with a parabolic element.

Remark 2.5. A more interesting example of a Kleinian group would be the group
PSL2(Z[i]), or more generally a Bianchi group PSL2(OQ(

√
−d)) where d is a positive

square-free integer. These groups will arise naturally when we construct Kleinian
groups from orders in quaternion algebras, as they correspond to the case in which
the quaternion algebra being considered is M2(Q(

√
−d)).

Definition 2.6. Let Γ be a subgroup of PSL2(C).

• The group Γ is reducible if all elements of γ have a common fixed point in
their action on Ĉ. Otherwise Γ is irreducible.
• The group Γ is elementary if it is virtually abelian; that is, it contains an

abelian subgroup of finite index.

Remark 2.7. An equivalent definition of elementary is that any two elements of
infinite order have a common fixed point.

All of the groups in Example 2.3 are cyclic and therefore abelian, hence elementary.
The classification of torsion-free elementary Kleinian groups turns out not to be much
more complicated.

Theorem 2.8. If Γ is a torsion-free elementary Kleinian group then Γ is one of the
following abelian groups:

(1) 〈γn : n ∈ Z〉 where γ is parabolic
(2) 〈γn : n ∈ Z〉 where γ is loxodromic
(3) 〈γn1 γm2 : n,m ∈ Z〉 where γ1, γ2 are parabolic elements with a common fixed

point but different translation directions

In fact the classification of all elementary Kleinian groups is known (see [3]).
In contrast to the examples given above, non-elementary Kleinian groups can be

quite complicated, as the following theorem makes clear.

Theorem 2.9. Every non-elementary Kleinian group contains infinitely many loxo-
dromic elements, no two of which have a common fixed point.
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Given a subgroup of PSL2(C), it can be challenging to decide whether the group is
discrete. Two of the best results that are known in this direction are due to Jørgensen
[19, 20].

Theorem 2.10 (Jørgensen). Let x, y ∈ PSL2(C) and Γ ⊂ PSL2(C) be a non-
elementary subgroup.

(1) Γ is discrete if and only if every two-generator subgroup of Γ is discrete.
(2) 〈x, y〉 is discrete if and only if

| tr2 x− 4|+ | tr[x, y]− 2| ≥ 1,

where [x, y] = xyx−1y−1 is the commutator of x and y.

As an immediate consequence of Jørgensen’s inequality we have an interesting
lemma of Shimizu [33, Lemma 4].

Lemma 2.11 (Shimizu). If Γ is a non-elementary Kleinian group containing a par-

abolic element x =

(
1 µ
0 1

)
then every element y =

(
a b
c d

)
∈ Γ satisfies |cµ| ≥ 1.

Proof. As tr[x, y] = tr (xyx−1y−1) = 2 + c2µ2, the lemma is a direct consequence of
Theorem 2.10(2). �

We should note that Shimizu’s original proof of Lemma 2.11, like Jørgensen’s proof
of Theorem 2.10(2), relies heavily on elementary matrix manipulations.

Irreducible two-generator groups can be easily identified by means of the following
linear independence condition.

Proposition 2.12. Let x, y ∈ PSL2(C). Then 〈x, y〉 is irreducible if and only if the
vectors 1, x, y, xy are linearly independent in M2(C).

2.4. Geodesics. Let Γ be a Kleinian group with finite covolume and γ ∈ Γ be a
non-identity element which is not parabolic. Then Γ has two fixed points in Ĉ and
the axis Aγ of Γ is the unique geodesic in H3 joining these fixed points. In terms
of its induced isometry of H3, γ moves points along Aγ by some distance `0(γ) and
rotates them about Aγ by an angle θ(γ). We call `0(γ) the translation length of γ
and θ(γ) the rotation angle of γ. The quantity

`(γ) = `0(γ) + iθ(γ)

is called the complex length of γ. These quantities are all connected by virtue of
the formula

(1) tr(γ) = 2 cosh

(
`(γ)

2

)
.

Suppose now that γ is loxodromic and let λ(γ) denote its eigenvalue satisfying |λ(γ)| >
1. Then we have the following useful formula for the translation length of γ:

`0(γ) = 2 log |λ(γ)|.

A few observations about the translation length are in order. When γ is hyperbolic
it is always that case that θ(γ) = 0. When γ is elliptic on the other hand, `0(γ) = 0
and γ simply rotates points about its axis. Note that in this case γ will have finite
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order precisely when θ(γ) ∈ 2πQ. Finally, by convention we have that `0(γ) = θ(γ) =
0 when γ is parabolic.

Now let M = H3/Γ be a complete orientable hyperbolic 3-manifold of finite covol-
ume. Given a loxodromic element γ ∈ Γ, the axis Aγ projects to a closed geodesic
on M . Moreover, the length of this closed geodesic on M is the translation length
`0(γ). Now consider a homotopically non-trivial closed loop Q in M . Because M
is a closed Riemannian manifold of negative curvature, Q is freely homotopic to a
unique closed geodesic. We now define the length of Q to be the translation length
of the unique (up to conjugacy) loxodromic element of Γ whose axis projects onto
Q. We therefore have a correspondence between closed geodesics on M and (conju-
gacy classes of) loxodromic elements in π1(M). These geodesic lengths may thus be
studied by means of the trace of the corresponding loxodromic element via equation
(1). An important observation is that, modulo a slight ambiguity arising from the
fact that tr γ is only defined up to ±1, the number of closed geodesics on M having a
fixed length corresponds to the number of conjugacy classes of elements of Γ having
a certain fixed minimal polynomial.

We conclude our discussion by recording an important consequence of Theorem
2.9.

Theorem 2.13. If Γ is a non-elementary Klienian group then M = H3/Γ contains
infinitely many distinct closed geodesics.

2.5. Commensurability. We now give the definition of commensurability, a notion
that will underlie much of what is to follow in these notes. Indeed, one of our main
goals will be to attach to a finite volume hyperbolic 3-manifold invariants which
depend only on the manifold’s commensurability class. The notion of commensura-
bility is quite natural from the standpoint of arithmetic hyperbolic 3-manifolds, as
we will see that the commensurability class of such a manifold corresponds to a cer-
tain quaternion algebra, a number theoretic object for which there is a rich structure
theory.

Definition 2.14. Let Γ1,Γ2 be subgroups of PSL2(C).

• We say that Γ1 and Γ2 are directly commensurable if Γ1 ∩ Γ2 has finite
index in both Γ1 and Γ2. We say that Γ1 and Γ2 are commensurable in the
wide sense if Γ1 and a conjugate of Γ2 are directly commensurable.
• Let M1,M2 be hyperbolic 3-manifolds (or orbifolds). We say that M1 and M2

are commensurable if they have a common finite sheeted hyperbolic cover.

Note that in the definition of commensurable, the common cover will usually only
be considered up to isometry. In this case the two manifolds / orbifolds will be
commensurable if and only if their fundamental groups are commensurable in the wide
sense. It is for this reason that we will be interested primarily in commensurability
in the wide sense.

Within a commensurability class we can also pass from orbifolds to manifolds (or
equivalently, from Kleinian groups to torsion-free Kleinian groups) by virtue of Sel-
berg’s Lemma.

Theorem 2.15 (Selberg’s Lemma). If Γ is a finitely generated subgroup of GLn(C)
then Γ contains a torsion-free subgroup of finite index.
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3. Quaternion algebras

One of the themes throughout these notes is the idea that much of the geometry of
hyperbolic 3-manifolds can be characterized in an algebraic manner and studied using
powerful techniques from non-commutative algebra and number theory. Crucial to
this characterization is the notion of a quaternion algebra. We will see that to every
Kleinian group of finite covolume is a quaternion algebra defined over a number field.
In this section we will review some of the basic properties of quaternion algebras.

Unless explicitly stated otherwise, throughout this section we will denote by R a
commutative ring and by k a field of characteristic other than 2.

3.1. Central simple algebras: Generalities. We begin with a few definitions.

Definition 3.1. A ring A is an R-algebra if A has the structure of an R-module
in which the ring and module operations satisfy the compatibility condition r(ab) =
(ra)b = a(rb) for all r ∈ R and a, b ∈ A.

Example 3.2. Every ring A has the structure of a Z-algebra. This structure is induced
by the unique homomorphism Z ↪→ A mapping 1 to the multiplicative identity of A.

Example 3.3. Let X be a topological space and C(X,R) be the set of continuous real-
valued functions f : X → R. The set C(X,R) has the structure of a commutative
ring where functions are added and multiplied pointwise (i.e., (f+g)(x) = f(x)+g(x)
and (fg)(x) = f(x)g(x)). In fact it is not hard to see that C(X,R) is an R-algebra
via the constant functions r ∈ R 7→ f(x) ≡ r.

Example 3.4. Let k be a field, V a k-vector space and Endk(V ) the set of k-linear
transformations from V to itself. The set Endk(V ) is a ring (called the endomorphism
ring of V ) where addition is defined pointwise and multiplication is given by compo-
sition of functions. Note that Endk(V ) has the structure of a k-algebra via the map
k ↪→ Endk(V ) given by a 7→ (v 7→ av). When V = kn the resulting endomorphism
algebra is isomorphic to the matrix algebra Mn(k).

In what follows A is always assumed to be an R-algebra.

Definition 3.5. The algebra A is simple if it is simple as an R-module. That
is, A contains no proper nontrivial submodules. Equivalently, A contains no proper
nontrivial two-sided ideals.

Let Z(A) denote the center of A when regarded as a ring. That is,

Z(A) = {a ∈ A : ab = ba for all b ∈ A}.
By definition it is always the case that R ⊆ Z(A).

Definition 3.6. The algebra A is a division algebra if every non-zero element of
A has a multiplicative inverse.

Definition 3.7. The algebra A is central if R = Z(A).

Definition 3.8. The dimension of a k-algebra A is the dimension of A as a k-vector
space.

We now define this section’s main object of study.
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Definition 3.9. A central simple algebra (over k) is a k-algebra which is both
central and simple.

Example 3.10. If D is k-algebra which is a division algebra then D is simple. When
D is central as well we will refer to it as a central division algebra.

Example 3.11. Let L/k be a degree n extension of fields so that L has the structure
of a k-algebra. As a k-algebra L has dimension n and is simple, but is not central.

Example 3.12. We now return to the example C(X,R) defined above. This algebra
is neither central nor simple. The former assertion is an immediate consequence
of C(X,R) being commutative, while the latter assertion follows from the existence
of the two-sided ideal consisting of all functions f ∈ C(X,R) such that f(x0) = 0
(where x0 ∈ X is any fixed element). In general the algebra C(X,R) will not be finite
dimensional. When X = R for instance, an infinite linearly independent set is given
by the polynomial functions {1, x, x2, x3, . . . }.

Example 3.13. Our first example of a central simple algebra is the algebra Mn(k). The
center of Mn(k) consists of all scalar multiples of the matrix diag(1, . . . , 1), and an
easy argument with elementary matrices implies that Mn(k) has no two-sided ideals.
The dimension of Mn(k) is n2.

Example 3.14. Our second example of a central simple algebra is the four dimen-
sional division algebra H of Hamilton’s quaternions. This is the R-algebra with basis
{1, i, j, ij} subject to the relations

i2 = j2 = −1

and ij = −ji. We will later see that H is the unique four dimensional central division
algebra over R.

The following is a fundamental theorem in the study of central simple algebras.

Theorem 3.15 (Skolem-Noether). Let k be a field, A be a finite-dimensional central
simple algebra over k and B be a finite-dimensional simple k-algebra. If f1, f2 :
B −→ A are algebra homomorphisms then there exists an element a ∈ A∗ such that
f2(b) = a−1f1(b)a for all b ∈ B.

The following corollary of Theorem 3.15 is important enough that it is also often
referred to as the Skolem-Noether Theorem.

Corollary 3.16. Every automorphism of a central simple algebra is an inner auto-
morphism.

Proof. This follows from the Skolem-Noether theorem upon taking A = B, f1 the
identity map and f2 an arbitrary automorphism of A. �

Crucial to the theory of central simple algebras is the structure theorem of Wedder-
burn which characterizes central simple algebras as matrix algebras taking coefficients
in a central division algebra.

Theorem 3.17 (Wedderburn). Let A be a central simple algebra over a field k. Then
there is a central division algebra D over k such that A ∼= Mn(D) for some n ≥ 1.
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3.2. Quaternion algebras: Generalities.

Definition 3.18. A quaternion algebra over k is a four-dimensional central simple
algebra over k with basis {1, i, j, ij} satisfying the relations

i2 = a, j2 = b, ij = −ji
for some a, b ∈ k∗.

We will denote the quaternion algebra in Definition 3.18 via its Hilbert symbol
(
a,b
k

)
.

Also note that the terminology “quaternion algebra” is motivated by the fact that the
algebras defined above generalize Hamilton’s construction of H, which in our notation
corresponds to the algebra

(−1,−1
R

)
.

An important property of quaternion algebras is that they behave very nicely with
respect to extension of scalars. That is, if k′ is a field containing k then we have(

a, b

k

)
⊗k k′ ∼=

(
a, b

k′

)
.

To make the utility of this property more apparent we will prove that the quaternion
algebra

(
a,b
k

)
is always a central simple algebra of dimension 4.

Proposition 3.19. The quaternion algebra
(
a,b
k

)
is a four dimensional central simple

algebra.

Proof. That
(
a,b
k

)
is four dimensional as a k-algebra is clear. We first show that

(
a,b
k

)
is central. Let k̂ be an algebraic closure of k and consider the k̂-algebra(

a, b

k

)
⊗k k̂ ∼=

(
a, b

k̂

)
.

By Wedderburn’s theorem this algebra is either a central division algebra or else is

isomorphic to M2(k̂). To see that it cannot be a central division algebra, we argue

as follows. Let z ∈
(
a,b

k̂

)
be a non-scalar element and consider the set of powers

{zn : n ∈ Z≥0}. This set cannot be linearly independent because
(
a,b

k̂

)
has finite

dimension, hence there is an irreducible polynomial f ∈ k̂[x] of least degree such that

f(z) = 0. But since k̂ is algebraically closed we must have z ∈ k̂, a contradiction. It

follows that
(
a,b

k̂

)
∼= M2(k̂). The latter algebra is known to be central with center k̂,

hence
(
a,b
k

)
is central as well.

Our proof that
(
a,b
k

)
is simple is similar. Let I be a non-zero two-sided ideal of(

a,b
k

)
and consider the ideal I ⊗k k̂ of M2(k̂). Because the latter is simple, I ⊗k k̂ is

four dimensional as a vector space over k̂. It follows that I is four dimensional as a
vector space over k, hence I =

(
a,b
k

)
. �

We will now show that not only are quaternion algebras examples of four dimen-
sional centra simple algebras, but in fact every four dimensional centra simple algebra
is a quaternion algebra.

Theorem 3.20. Let A be a four dimensional central simple algebra over k. There
exist a, b ∈ k∗ such that A ∼=

(
a,b
k

)
.
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Proof. Wedderburn’s theorem (Theorem 3.17) implies that if A is not a division al-
gebra then A ∼= M2(k). In the latter case

(
1,1
k

) ∼= A via the isomorphism induced
by

i 7→
(

0 1
1 0

)
and

j 7→
(

1 0
0 −1

)
.

We may therefore assume that A is a division algebra. Let x ∈ A \ k and consider
the quadratic field extension L = k(x)/k. Because k has characteristic not equal to
2 there exists an element i ∈ L such that i2 ∈ k and L = k(i). Denote by σ the
non-trivial automorphism of L/k; that is, the map induced by σ(i) = −i. By the
Skolem-Noether theorem there exists an element j ∈ A∗ such that

jij−1 = σ(i) = −i.

In other words, j satisfies ij = −ji. Clearly the element j does not lie in L = k(i). In
fact we claim that {1, i, j, ij} is a basis for A. To see this, suppose that ij = α+βi+γj
with α, β, γ ∈ k and note that the equality

j =
α + βi

i− γ
implies that j ∈ L = k(i), a contradiction. We will now show that j2 ∈ k. It suffices
to show that j2 lies in the center of A. To that end we must show that j2 commutes
with i. But this follows from the relations jij−1 = −i and ij = −ji (which imply
that j2ij−2 = i). This concludes the proof as we have shown that A ∼=

(
a,b
k

)
where

a = i2 and b = j2. �

We note that while Theorem 3.20 guarantees that if A is a four dimensional central
simple algebra over k then there exist a, b ∈ k∗ such that A ∼=

(
a,b
k

)
, it is not the case

that a, b uniquely determine the isomorphism class of A. This is illustrated in the
following result, which shows that the isomorphism class of

(
a,b
k

)
is unchanged upon

multiplying a or b by squares.

Proposition 3.21. If a, b, x, y ∈ k∗ then(
a, b

k

)
∼=
(
ax2, by2

k

)
.

Proof. Let {1, i, j, ij} and {1, i′, j′, i′j′} be bases for
(
a,b
k

)
and

(
ax2,by2

k

)
and

φ :

(
ax2, by2

k

)
→
(
a, b

k

)
be the homomorphism obtained by defining φ(1) = 1, φ(i′) = xi, φ(j′) = yj, φ(i′j′) =
xyij and extending linearly. The image of φ is the k-subalgebra of

(
a,b
k

)
with basis

{1, xi, yj, xyij}. As this subalgebra has dimension four over k, it must coincide with(
a,b
k

)
. In other words, φ is surjective. Any surjective homomorphism between k-

algebras of the same dimension is an isomorphism, so the proposition follows. �
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It is, of course, useful to know when
(
a,b
k

)
is isomorphic to M2(k) and when it is

a division algebra (which by Wedderburn’s theorem are the only two possibilities).
The following proposition will be very useful in this regard.

Proposition 3.22. The quaternion algebras
(

1,b
k

)
and M2(k) are isomorphic for any

b ∈ k∗.

Proof. The desired isomorphism is given by the map

ψ :

(
1, b

k

)
−→ M2(k),

where

ψ(x+ yi+ zj + wij) =

(
x+ y z + w
b(z − t) x− y

)
.

The inverse is the map defined by

ψ−1

((
α β
γ δ

))
=

1

2
(α + δ + (α− δ)i+ (β + b−1γ)j + (β − b−1γ)ij).

�

We conclude this section by proving an important property about subfields of
quaternion algebras.

Proposition 3.23. Let A be a quaternion algebra over a field k and L/k a quadratic
field extension. If there exists an embedding of k-algebras L ↪→ A then A ⊗k L ∼=
M2(L).

Proof. By identifying L with its image in A it suffices to assume that L ⊂ A. We
may select a basis {1, i, j, ij} of A such that L = k(i) and i2 = a ∈ k∗. We now have

A⊗k L ⊃ L⊗k L ∼= L⊗k k[x]/(x2 − a) ∼= L[x]/(x2 − a) ∼= k ⊕ k.
The algebra k ⊕ k contains zero divisors, hence A⊗k L is not a division algebra. By
Theorem 3.17 we have that A⊗k L ∼= M2(L). �

3.3. Quaternion algebras over the complex numbers. Quaternion algebras over
C are very easy to understand. There is a unique such quaternion algebra: M2(C).

Theorem 3.24. If A is a quaternion algebra over C then A ∼= M2(C).

Proof. The fundamental theorem of algebra implies that every element of C∗ is a
square, hence A ∼=

(
1,1
C

)
by Proposition 3.21. The latter quaternion algebra is iso-

morphic to M2(C) by Proposition 3.22. �

3.4. Quaternion algebras over the real numbers. The structure of quaternion
algebras over R is more complicated than over C, but only just. Up to isomorphism
there are only two quaternion algebras over R: M2(R) and H.

Theorem 3.25. If A is a quaternion algebra over R then A ∼= M2(R) or A ∼= H.

Proof. Proposition 3.21 implies that A is isomorphic to one of the following three
quaternion algebras:

(−1,−1
R

)
,
(

1,−1
R

)
or
(

1,1
R

)
. The first of these algebras is isomorphic

to H by definition, while the second and third are isomorphic to M2(R) by Proposition
3.22. �
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3.5. Quaternion algebras over p-adic fields. Let k be a p-adic field with fixed
uniformizer π. As was the case for R, there are precisely two isomorphism classes of
quaternion algebras over k. Moreover, we once again have an explicit description of
the unique quaternion division algebra over k. As the proof would take us too far
afield, we will simply state the following result and refer the reader to [36] for a more
details.

Theorem 3.26. The k-algebra
(
u,π
k

)
is the unique quaternion division algebra over

k, where k(
√
u) is the unique unramified quadratic extension of k.

3.6. Quaternion algebras over number fields. Let k be a number field, a, b ∈ k∗
and consider the quaternion algebra

(
a,b
k

)
. If K is a field containing k then we may

obtain a K-quaternion algebra from
(
a,b
k

)
via extension of scalars:

(
a,b
k

)
⊗kK ∼=

(
a,b
K

)
.

In the study of the structure of quaternion algebras over number fields one often
chooses K to be a completion of k (i.e., C,R or a p-adic field kp for some prime p
of k) and studies the algebra over K obtained by extension of scalars. The hope, of
course, is that one can then deduce information about the structure of the original
algebra over k.

To make all of this more precise, let {1, i, j, ij} be the standard basis for
(
a,b
k

)
and

σ : k ↪→ K a fixed embedding.

Lemma 3.27. There is an isomorphism(
a, b

k

)
⊗σ K ∼=

(
σ(a), σ(b)

K

)
.

Proof. Let {1, i′, j′, i′j′} be the standard basis for
(
σ(a),σ(b)

K

)
. The desired isomorphism

is the one assigning

(a0 + a1i+ a2j + a3ij)⊗σ α 7→ α(σ(a0) + σ(a1)i′ + σ(a2)j′ + σ(a3)i′j′).

�

As an example application of this, consider the quaternion algebra
(
−1,−1

Q

)
. If

σ : Q → R is the standard inclusion then Lemma 3.27 implies that
(
−1,−1

Q

)
is a

division algebra (as σ(−1) = −1 and
(−1,−1

R

)
is a division algebra). An interesting

nuance in the theory of quaternion algebras over number fields is that unlike R, there
is not a unique quaternion division algebra over a number field. In fact, over every
number field there are infinitely many isomorphism classes of quaternion algebras!

Definition 3.28. Let k be a number field, v be a place of k with corresponding em-
bedding σ, and kv be the corresponding completion of k. We say that a quaternion
algebra A over k is ramified at σ and v if A⊗σ kv is a division algebra. Otherwise
we say that A is split at σ and v.

Remark 3.29. For convenience we will usually say that a quaternion algebra A over
k is ramified at a place v of k and omit mention of the associated embedding σ.

Remark 3.30. Notice that if A = M2(k) then A ⊗σ kv ∼= M2(kv) for all σ, v. In
particular every place of k is split in M2(k).
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Recall that by Theorem 3.24, every quaternion algebra over k is split at all complex
places. Thus only real or p-adic places may ramify.

Suppose now that k has r1 real places and r2 complex places. Denote by S∞ the
set of archimedean places of k. We therefore have isomorphisms

A⊗Q R ∼=
⊕
v∈S∞

A⊗k kv

∼= M2(C)r2 ×
⊕
σ:k↪→R

A⊗σ kv

∼= M2(C)r2 ×M2(R)s ×Hr1−s,

where s is the number of real places of k at which A is split. In Section 6 we will see
that arithmetic Kleinian groups are constructed from quaternion algebras in which
r2 = 1 and s = 0. A simple way of ensuring this is by taking k to be an imaginary
quadratic field, in which case s = 0 since there are no real places.

Let Ram(A) denote the set of places of k (be they finite or infinite) at which A
is ramified. The following theorem classifies quaternion algebras over number fields
and implies, as was stated above, that there are finitely many isomorphism classes of
quaternion division algebras over every number field. For a proof, see [36, Chapitre
III.3].

Theorem 3.31 (Classification of Quaternion Algebras over Number Fields). Let k
be a number field. If A is a quaternion algebra over k then Ram(A) is finite and of
even cardinality. Conversely, given any finite set S of places of k (finite or infinite)
with even cardinality there exists a unique quaternion algebra A over k such that
Ram(A) = S.

The following is an immediate corollary of Theorem 3.31.

Corollary 3.32. If k is a number field and A,A′ are quaternion algebras over k then
A ∼= A′ if and only if Ram(A) = Ram(A′).
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4. Trace fields and quaternion algebras

In this section we will attach to a Kleinian group Γ of finite covolume two arithmetic
objects: a number field and a quaternion algebra. These objects will turn out to
be invariants of the commensurability class of Γ and will encode a great deal of the
geometry of the hyperbolic 3-orbifold H3/Γ. For instance, we will use these invariants
to show that the closed hyperbolic 3-manifold of smallest volume has no immersed
totally geodesic surfaces.

4.1. Trace fields and quaternion algebras for finite covolume Kleinian groups.
Let Γ be a non-elementary subgroup of PSL2(C) and Γ̂ := P−1(Γ) denote the preim-
age of Γ under the projection map P : SL2(C)→ PSL2(C).

Definition 4.1. The trace field of Γ, denoted Q(tr Γ), is the field Q(tr γ̂ : γ̂ ∈ Γ̂).

The following result, proven in [24, Theorem 3.1.2], is a consequence of Mostow’s
Rigidity Theorem and an examination of the representation variety Hom(Γ, SL2(C)).

Theorem 4.2. If Γ is a Kleinian group of finite covolume then Q(tr Γ) is a number
field.

We now associate to Γ a quaternion algebra defined over Q(tr Γ). To begin with,
define

A0Γ =
{∑

aiγi : ai ∈ Q(tr Γ), γi ∈ Γ
}
,

where only finitely many of the ai are non-zero. We define multiplication in the
obvious manner. For instance, a1γ1 · a2γ2 = a1a2(γ1γ2).

It is clear that A0Γ is an algebra over Q(tr Γ). The following theorem shows that
in fact, A0Γ is a quaternion algebra over Q(tr Γ). During the course of the proof it
will often be useful to consider the C-algebra A0Γ ⊗Q(tr Γ) C. To ease notation we
will denote this algebra as A0Γ⊗C. All other undecorated tensor products are with
respect to Q(tr Γ) as well.

Theorem 4.3. A0Γ is a quaternion algebra over Q(tr Γ).

Proof. As we have already noted that A0Γ is a Q(tr Γ)-algebra, we must show that
A0Γ is a four-dimensional central simple algebra over Q(tr Γ).

Because Γ is non-elementary, it contains a pair of loxodromic elements g, h such
that 〈g, h〉 is irreducible. This implies, by Proposition 2.12 that Id, g, h, gh are linearly
independent in M2(C). It follows that A0Γ⊗ C is an algebra of dimension at least 4
over C which is contained in M2(C), hence A0Γ⊗ C = M2(C).

We now show that A0Γ has dimension exactly 4 over Q(tr Γ). Let T (·, ·) denote
the trace form on M2(C); that is, the map T (a, b) = tr(ab). It is a non-degenerate
symmetric bilinear form. Let {Id∗, g∗, h∗, (gh)∗} be a dual basis of M2(C). Since this
basis spans, for γ ∈ Γ we have

γ = x0 Id∗+x1g
∗ + x2h

∗ + x3(gh)∗, xi ∈ C.
If γi ∈ {Id, g, h, (gh)} then T (γ, γi) = tr(γγi) = xj for some j ∈ {0, 1, 2, 3}. Since
tr γγi ∈ Q(tr Γ), we see that x1, . . . , x3 ∈ Q(tr Γ) as well. Thus

Q(tr Γ)[Id, g, h, gh] ⊂ A0Γ ⊂ Q(tr Γ)[Id∗, g∗, h∗, (gh)∗].
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Therefore A0Γ is four dimensional over Q(tr Γ).
That A0Γ is central follows from the fact that A0Γ⊗C = M2(C) is central. Indeed,

if a ∈ A0Γ is central, then a lies in the center of A0Γ ⊗ C = M2(C) as well. This
implies that a is a multiple of the identity.

Finally, we must show that A0Γ is simple. Let I be a non-zero two-sided ideal of
A0Γ. Then I ⊗ C is a non-zero two-sided ideal in M2(C). As M2(C) is simple, we
must have I ⊗ C = M2(C); that is, I ⊗ C has dimension 4 over C. Thus I must
have dimension at least 4 over Q(tr Γ), so a comparison of dimensions shows that
I = A0Γ. �

We remark that multiplication in A0Γ is simply the restriction of matrix multi-
plication in M2(C). Similarly, the reduced trace and norm in A0Γ coincide with the
usual matrix trace and determinant in M2(C).

Corollary 4.4. If Γ is a non-elementary Kleinian group and g, h ∈ Γ are loxodromic
elements for which 〈g, h〉 is irreducible, then A0Γ = Q(tr Γ)[Id, g, h, gh].

In what follows we will let k = Q(tr Γ).

Corollary 4.5. Let Γ be a non-elementary Kleinian group with finite covolume and
γ ∈ Γ be a loxodromic element with eigenvalue λ. The group Γ is conjugate to a
subgroup of SL2(k(λ)).

Proof. Suppose first that for every loxodromic element γ ∈ Γ the eigenvalue λ of γ
is an element of k. In this case we have k(λ) = k, hence we must show that Γ is
conjugate to a subgroup of SL2(k). Let g, h be loxodromic elements of Γ with no
common fixed points so that group 〈g, h〉, which is discrete by Theorem 2.10(1), is
irreducible. Because of our assumption that the eigenvalues of g, h lie in k, we may
conjugate so that all of the matrix entries of g and h lie in k. Corollary 4.4 shows
that A0Γ = k[Id, g, h, gh], hence A0Γ ⊂ M2(k). It follows that upon conjugating,
Γ ⊂ SL2(k).

Suppose now that γ ∈ Γ is a loxodromic element with eigenvalue λ 6∈ k. In this
case λ satisfies a quadratic polynomial over k; namely, the characteristic polynomial
of γ. Thus k(λ) is a quadratic field extension of k. Conjugating γ to have the form
of its class representative, we may assume that k(λ) ⊂ A0Γ. Proposition 3.23 now
implies that A0Γ ⊂ A0Γ ⊗k k(λ) ∼= M2(k(λ)), hence Γ is conjugate to a subgroup of
SL2(k(λ)). �

The following applications of this corollary are worth noting.

Corollary 4.6. If Γ is a non-elementary subgroup of SL2(C) such that Q(tr Γ) ⊂ R,
then Γ is conjugate to a subgroup of SL2(R).

Proof. Taking γ to be loxodromic we see that it will have a real trace, hence γ will be
hyperbolic. This implies that λ ∈ R so that the result follows from Corollary 4.5. �

Corollary 4.7. If Γ is a torsion-free cocompact Kleinian group with finite covolume
then Γ contains infinitely many elements which are loxodromic but not hyperbolic.

Proof. Our hypotheses imply that every element of Γ is loxodromic. Suppose that
γ1, . . . , γn are the only elements of Γ which are not hyperbolic. Because Γ is the
fundamental group of a hyperbolic 3-manifold, Γ is residually finite; that is, given
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any non-identity element γ ∈ Γ there exists a normal subgroup Γ′ of Γ such that
[Γ : Γ′] < ∞ and γ 6∈ Γ′. It follows that there exists a finite index subgroup Γ0 of Γ
which contains none of the elements γ1, . . . , γn. Every element of Γ0 is thus hyperbolic
so that Q(tr Γ0) ⊂ R. By Corollary 4.6, this means that Γ0 ⊂ SL2(R) and hence has
infinite covolume. But this contradicts the fact that covol(Γ0) = [Γ : Γ0] · covol(Γ) <
∞. �

Corollary 4.8. Let Γ be a non-elementary Kleinian group with finite covolume. If
an element γ ∈ Γ has order greater than 8[k : Q]2 then γ has infinite order.

Proof. Suppose that γ ∈ Γ has finite order m and let λ be the eigenvalue of γ. The
field k(λ) contains the cyclotomic field Q(ζ2m) and hence has degree over Q at least
ϕ(2m) where ϕ is the Euler phi-function. (The 2m is because we are looking at a
preimage of γ under the projection map P : SL2(C) → PSL2(C).) We have already
seen that 2[k : Q] ≥ [k(λ) : Q], allowing us to deduce that

2[k : Q] ≥ ϕ(2m) ≥
√

2m

2
.

The result follows. �

4.2. Invariant trace field and quaternion algebra. In the last section we saw
that one can attach to any Kleinian group having finite covolume a trace field Q(tr Γ)
and quaternion algebra A0Γ defined over this field. Moreover, we saw that the field
Q(tr Γ) is a finite degree extension of Q, hence we can study the algebra A0Γ using
techniques from algebraic number theory. While the trace field and quaternion algebra
are invariants of the Kleinian group Γ, they are not in general invariants of the
commensurability class of Γ.

Consider for example the subgroup Γ = 〈g, h〉 of PSL2(C) where

g =

(
1 1
0 1

)
, h =

(
1 0
−ω 1

)
for ω = −1+

√
−3

2
. All of the matrix entries of Γ lie in the ring of integers Z[ω] of

Q(
√
−3), and in fact Γ is a subgroup of the Bianchi group PSL2(Z[ω]) of index 12.

Therefore Γ is discrete and Q(tr Γ) = Q(
√
−3). Let x =

(
i 0
0 −i

)
so that the image

Px of x in PSL2(C) normalizes Γ and has square equal to the identity. The group
Γ′ = 〈Γ, Px〉 is therefore a subgroup of the normalizer of Γ which contains Γ with
index 2. In particular Γ and Γ′ are directly commensurable. Notice however that

Γ′ contains the element xhg =

(
i i
iω −i+ iω

)
. It follows that the trace field of Γ′

contains both ω and i and is in fact equal to Q(i, ω). Thus Γ and Γ′ are commensurable
yet have different trace fields.

The above example shows that commensurable groups need not have the same
trace field. We will now show how one may associate to any finitely generated non-
elementary Kleinian group Γ a subgroup of finite index whose trace field is an invariant
of its commensurability class.

Definition 4.9. Let Γ(2) = 〈γ2 : γ ∈ Γ〉 be the subgroup of Γ generated by squares.
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Lemma 4.10. The group Γ(2) is a finite index normal subgroup of Γ whose quotient
is an elementary abelian 2-group.

Proof. The group Γ(2) is clearly normal in Γ with finite index. It is also clear that
every element in the quotient group Γ/Γ(2) has order 2. The lemma now follows from
the fact that Γ, and hence Γ/Γ(2), is finitely generated. �

Remark 4.11. Implicit in the proof of Lemma 4.10 was the (very easy to prove) fact
that a finite group G in which every element has order 2 is abelian.

Given a torsion-free Kleinian group Γ with finite covolume one can derive upper
bounds on the order of the finite group Γ/Γ(2) in terms of the covolume of Γ.

Proposition 4.12. Let Γ be a torsion-free Kleinian group with finite covolume V .
There is a constant c > 0 such that [Γ : Γ(2)] ≤ 2cV .

Proof. Let r(Γ) denote the number of generators of Γ so that [Γ : Γ(2)] ≤ 2r(Γ). The
proposition now follows from the rank-volume inequality of Gelander [18, Theorem
1.7], which asserts the existence of a constant c > 0 for which r(Γ) ≤ cV . �

We are now able to prove this section’s main result, that the trace field of Γ(2) is an
invariant of the commensurability class of Γ. Our proof will make use of the following
lemma.

Lemma 4.13. Let Γ be a finitely generated non-elementary subgroup of PSL2(C). If
there is a containment Q(tr Γ(2)) ⊂ Q(tr Γ1) for every finite index subgroup Γ1 of Γ,
then Q(tr Γ(2)) is an invariant of the commensurability class of Γ.

Proof. Suppose that ∆ is commensurable with Γ. Lemma 4.10 shows that Γ(2) and
∆(2) are commensurable, so Γ(2)∩∆(2) has finite index in both Γ and ∆. By hypothesis
we have inclusions:

• Q(tr Γ(2)) ⊂ Q(tr Γ(2) ∩∆(2)), and
• Q(tr ∆(2)) ⊂ Q(tr Γ(2) ∩∆(2)).

By definition Q(tr Γ(2)∩∆(2)) ⊂ Q(tr Γ(2)) and Q(tr Γ(2)∩∆(2)) ⊂ Q(tr ∆(2)), so these
inclusions are equalities. This shows that Q(tr Γ(2)) = Q(tr ∆(2)). �

Theorem 4.14. Let Γ be a finitely generated non-elementary subgroup of PSL2(C).
The field Q(tr Γ(2)) is an invariant of the commensurability class of Γ.

Proof. By Lemma 4.13 it suffices to consider a finite index subgroup Γ1 of Γ and show
that Q(tr Γ(2)) ⊂ Q(tr Γ1). In fact, we may even assume that Γ1 is a normal subgroup
of Γ with finite index. This is because if we denote by C the core of Γ1 in Γ (i.e.,
the intersection of all conjugates of Γ1 with Γ), then C is a normal subgroup of Γ
with finite index and satisfies Q(trC) ⊂ Q(tr Γ1). It therefore suffices to show that
Q(tr Γ(2)) ⊂ Q(trC).

The argument in the previous paragraph shows that we may assume Γ1 is a finite
index normal subgroup of Γ. We now claim that if g ∈ Γ then g2 ∈ A0Γ1. Because
we are assuming that Γ1 is normal in Γ, conjugation by g induces an automorphism
of Γ1 and hence of A0Γ1. The Skolem-Noether theorem (Theorem 3.15) implies that
every automorphism of a quaternion algebra is inner, hence there exists an element
a ∈ (A0Γ1)∗ such that the induced automorphism is given by

x 7→ axa−1
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for all x ∈ A0Γ1. Considering A0Γ1 ⊗ C = M2(C), we claim that g−1a is central and
hence g−1a = y Id for some y ∈ C. Indeed, it suffices to show that g−1a commutes
with every element γ ∈ Γ. But this is clear because in this context we have, by
definition of a, that aγa−1 = gγg−1. Consequently g−1a = y Id and

y2 = det(y Id) = det(g−1a) = det(g−1) det(a) = det(a)

so that y2 = det(a) ∈ Q(tr Γ1) and g2 = y−2a2 ∈ A0Γ1 as claimed. Since g was
an arbitrary element of Γ we conclude that Γ(2) ⊂ A0Γ1, hence tr Γ(2) ⊂ trA0Γ1 ⊂
Q(tr Γ1) and consequently Q(tr Γ(2)) ⊂ Q(tr Γ1). �

Corollary 4.15. Let Γ be a finitely generated non-elementary subgroup of PSL2(C).
The quaternion algebra A0Γ(2) is an invariant of the commensurability class of Γ.

Proof. Suppose that Γ and ∆ are commensurable so that Q(tr Γ(2)) = Q(tr ∆(2)). Let
x, y ∈ Γ(2) ∩∆(2) be loxodromic elements for which 〈x, y〉 is irreducible. Then

A0Γ(2) = Q(tr Γ(2))[Id, x, y, xy] = Q(tr ∆(2))[Id, x, y, xy] = A0∆(2)

by Corollary 4.4. �

Definition 4.16. Let Γ be a finitely generated non-elementary subgroup of PSL2(C).
The field Q(tr Γ(2)) will henceforth be denoted by kΓ and referred to as the invariant
trace field of Γ. Similarly, the quaternion algebra A0Γ(2) will be denoted AΓ and
referred to as the invariant quaternion algebra of Γ.

Caution 4.17. Although the invariant trace field and quaternion algebra are indeed
commensurability invariants, they are not complete commensurability invari-
ants; that is, there are examples of non-commensurable manifolds with the same
invariant trace field and quaternion algebra. We will see however, that these are
complete commensurability invariants when the manifold is arithmetic.

Maclachlan and Reid [24, Theorem 3.6.2] were able to employ Corollary 4.4 so as
to provide the following explicit description of AΓ.

Theorem 4.18. If g and h are elements of the non-elementary Kleinian group Γ such
that 〈g, h〉 is irreducible, g, h do not have order 2 in PSL2(C) and g is not parabolic,
then

AΓ =

(
tr2 g − 4, tr[g, h]− 2

kΓ

)
.

We now prove a result which constrains the number fields which may occur as
the invariant trace field of a finite covolume Kleinian group. Later on, under the
assumption of arithmeticity, we will give a precise classification of the number fields
arising as invariant trace fields.

Corollary 4.19. If Γ is a Kleinian group with finite covolume then its invariant trace
field kΓ is a non-real extension of Q of finite degree.

Proof. That kΓ is a finite extension of Q is an immediate consequence of Theorem
4.2. Were kΓ to be contained in R, Γ(2) would be conjugate to a subgroup of SL2(R),
contradicting the fact that Γ(2) has finite covolume. �

We are now in a position to make our first connection between the topology of
hyperbolic manifolds and the structure of their quaternion algebras.
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Theorem 4.20. If Γ is a Kleinian group for which H3/Γ is non-compact, then AΓ =
M2(kΓ).

Proof. If Γ contains a parabolic element then so does Γ(2). Let γ ∈ Γ(2) be parabolic.
Then γ−Id is not invertible in AΓ. This implies that AΓ cannot be a division algebra
so that the result follows from Wedderburn’s theorem (Theorem 3.17). �

4.3. Application I: the Weeks manifold. The work of Jørgensen and Thurston
shows that the set of volumes of compact hyperbolic 3-manifolds is well-ordered. In
particular there exists a compact hyperbolic 3-manifold of smallest volume. Until
fairly recently the identity of this smallest volume compact hyperbolic 3-manifold
was unknown. In [27] Meyerhoff used Jørgensen’s theorem (Theorem 2.10) to derive
a lower bound for the volume of a compact hyperbolic 3-manifold. Such a manifold
must have volume greater than 0.00064. In the same paper he suggested that the
manifold manifold arising from (5, 1) Dehn surgery on the figure eight knot in the
3-sphere could very well be the sought after manifold. This manifold, now known as
the Meyerhoff manifold, is known to have volume 0.9812 . . . The Meyerhoff manifold
was proven to be arithmetic by Chinburg [7].

It is now known however that the compact hyperbolic 3-manifold of smallest volume
is the Weeks manifold. The compact hyperbolic 3-manifold of second smallest volume
is the Meyerhoff manifold. The Weeks manifold has volume 0.9427 . . . and arises
from (5, 2) and (5, 1) surgery on the Whitehead link. (The Weeks manifold is named
after Jeffrey Weeks who discovered it in his 1985 Ph.D. thesis [37].) That the Weeks
manifold has smallest volume amongst all compact hyperbolic 3-manifolds was proven
in 2009 by Gabai, Meyerhoff and Milley [17]. It had been proven earlier by Chinburg,
Friedman, Jones and Reid [9] that the Weeks manifold is arithmetic and is in fact the
arithmetic hyperbolic 3-manifold of smallest volume.

Remark 4.21. Observe that the two smallest volumes achieved by compact hyperbolic
3-manifolds are both achieved by arithmetic manifolds. This is true in dimension 2 as
well and is considered likely to be true in general. Of all known examples of compact
hyperbolic 4-manifolds for instance, the one with the smallest volume is the Davis
manifold [11, 16, 30]. The Davis manifold has Euler characteristic χ(M) = 26, hence
volume V = 4π2χ(M)/3, and is known to be arithmetic.

In this section we will describe the Weeks manifold in more detail and compute
its invariant trace field and quaternion algebra. Our proof follows Chinburg [7] and
Chinburg, Friedman, Jones and Reid [9, pp. 24-25].

Let MW denote the Weeks manifold and set π1(MW ) so that MW = H3/Γ. It is
known that π1(M) has presentation

(2) π1(MW ) = 〈a, b : a2b2a2b−1ab−1 = a2b2a−1ba−1b2 = 1〉.
Lemma 4.22. There is a representation ρ : π1(MW )→ SL2(C) such that the induced
projective representation ρ : π1(MW ) → PSL2(C) is discrete, faithful, and satisfies
MW = H3/ρ(π1(MW )). Let A = ρ(a) and B = ρ(b). There are nonzero x, y, r ∈ C
with |x|, |y| 6= 1 and

A =

(
x 1
0 x−1

)
, B =

(
y 0
r y−1

)
.
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Proof. Because MW is an orientable hyperbolic 3-manifold its hyperbolic structure
arises from some faithful discrete representation ρ1 : π1(MW ) → PSL2(C). Let A,B
be elements of SL2(C) whose images in PSL2(C) satisfy PA = ρ1(a) and PB = ρ1(b).
Define f(a, b) = a2b2a2b−1ab−1 and g(a, b) = a2b2a−1ba−1b2 so that

π1(MW ) = 〈a, b : f(a, b) = g(a, b) = 1〉.
Then f(A,B) = ± Id and g(A,B) = ± Id. Multiplying A and B by ± Id as needed,
we can take f(A,B) = 1 = g(A,B). This gives us a lifting ρ2 : π1(MW )→ SL2(C).

We claim that A and B have no common nonzero eigenvectors. Suppose to the
contrary that A and B do contain a common nonzero eigenvector. This implies that
(AB)−1BA is unipotent. But π1(MW ) contains no parabolic elements since MW is
compact, implying that (ab)−1ba = 1. But this implies that a and b commute, which
in turn implies that π1(MW ) is abelian. This contradiction proves our claim.

There exists a basis {v1, v2} of C2 such that Av1 = xv1 and Bv2 = y−1v2 for
nonzero x, y ∈ C with |x|, |y| 6= 1. The previous paragraph shows that v2 is not an
eigenvector of A, hence we may multiply v1 by some non-zero scalar so as to have
Av2 = x−1v2 +v1. Relative to the basis {v1, v2}, A and B now have the required form
for some r ∈ C. Notice that r 6= 0, for otherwise v1 would be a common eigenvector
of both A and B.

The resulting representation ρ : π1(MW )→ SL2(C) is conjugate to ρ2 and has the
requisite properties, proving the lemma. �

We now write the first relation for π1(MW ) as w = 0 where w = w(a, b) = a2b2a2−
ba−1b. The same relation must hold for A,B as in Lemma 4.22, giving us a system
of 4 equations in x, y, r: w11 = w12 = w21 = w22 = 0, where wij corresponds to the
(i, j)th matrix entry in w(A,B). For instance we have

0 = w21 = r(x− x2 + rxy − y2 + xy2).

Because r 6= 0 we must have

(3) r =
x2 − x+ y2 − xy2

xy
.

Upon substituting (3) into w11, w12, w22, we see that w11, w12, w22 are all divisible by

p(x, y) = 1 + x2 + y2 − xy2 + x2y2 + y4 + x2y4

and that w11 = w12 = w22 = 0 only if p(x, y) = 0.
We now write the second relation as u = 0 where u = a2b2 − b−2ab−1a. Solving for

u = 0 as above we deduce that

u12 = (x− y)(xy − 1) = 0,

whence x = y or x = y−1. Suppose that x = y (the other case will yield the same
conclusion) so that p(x, y) = p(x, x) = 1+2x2−x3 +2x4 +x6. Solving for z = x+x−1

yields z3 − z − 1 = 0, and by equation (3) we must have r = 2− z.
Let Γ = π1(MW ). We claim that the invariant trace field kΓ of MW is Q(z) where

z3 − z − 1 = 0. Indeed, it is clear that the trace field of Γ is Q(z), hence kΓ ⊂ Q(z).
As Q(z) has degree 3 over Q and this no proper subfields aside from Q, it suffices to
show that kΓ 6= Q. Consider the element trA2 = (x2 +x−2) ∈ kΓ. We will show that
Q(trA2) 6= Q. Suppose therefore to the contrary that x2 + x−2 ∈ Q and consider
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z2 = (x+ x−1)2 = 2 + x2 + x−2. In this case Q(z) could have degree at most 2 which
is a contradiction. This proves that kΓ = Q(z). We note that an alternative proof
that kΓ = Q(z) could have been obtained by using the presentation (2) of π1(MW )
to show that Γ(2) = Γ (i.e., that a, b ∈ Γ(2)). Similar considerations show that the set
{tr γ : γ ∈ Γ} consists entirely of algebraic integers in Q(z).

The invariant quaternion algebra AΓ of MW is given by the Hilbert symbol in
Theorem 4.18. Using the Magma [5] computer algebra system, we calculate that AΓ
is the quaternion algebra over kΓ = Q(z) which is ramified at the prime of norm 5
and the unique real place of Q(z). The relevant commands are:

> R<z>:=PolynomialRing(Rationals());

> F<a>=NumberField(z^3-z-1);

> A:=QuaternionAlgebra<F | z^2-4,3*z^2-z-5>;

> A;

Quaternion Algebra with base ring F, defined by i^2 = -3*z^2 + z, j^2 =

-3*z2 + 2

> RamifiedPlaces(A);

[ Prime Ideal

Two element generators:

[5, 0, 0]

[8, 1, 0]]

[ 1st place at infinity ]

> Norm(RamifiedPlaces(A)[1]);

5

The above discussion allows us to conclude the following.

Theorem 4.23. Let MW be the Weeks manifold and Γ ⊂ PSL2(C) its fundamental
group.

(1) The invariant trace field kΓ of MW is Q(z) where z3 − z − 1 = 0. This field
has discriminant −23 and precisely one complex place.

(2) tr γ is an algebraic integer for all γ ∈ Γ.
(3) AΓ is the quaternion algebra over kΓ which is ramified at the unique real place

of kΓ and the prime ideal lying above the rational prime 5.

Chinburg’s proof of the arithmeticity of the Meyerhoff manifold was carried out by
determining its invariant trace field and quaternion algebra and proving a theorem
analogous to Theorem 4.23. We leave this as an exercise for the interested reader.

Exercise 4.24. It is known that the fundamental group of the Meyerhoff manifold
has presentation

〈a, b : (ab−1a−1b)a(ab−1a−1b)−1b−1 = a4b−1aba−2bab−1a = 1〉.
Compute the invariant trace field and quaternion algebra of the Meyerhoff manifold.

4.4. Application II: manifolds with no totally geodesic surfaces. In this sec-
tion we will prove a theorem which relates the geometry of a finite-volume hyperbolic
3-manifold to the arithmetic structure of its invariant trace field and quaternion al-
gebra.
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Theorem 4.25. Let Γ be a Kleinian group of finite covolume which satisfies the
following two conditions.

(1) kΓ contains no proper subfield other than Q.
(2) AΓ ramifies at at least one infinite place of kΓ.

Then Γ contains no hyperbolic elements.

Proof. As Γ contains a hyperbolic element if and only if Γ(2) does, it suffices to
consider Γ(2). Let γ ∈ Γ(2) be a hyperbolic element. As tr γ ∈ R we see that
tr γ ∈ kΓ ∩ R>2 = Q>2.

Suppose now that AΓ ramifies at some infinite place ν of kΓ, which of course is
necessarily real. Thus AΓ⊗kΓkΓν ∼= H. Let σ : kΓ ↪→ R be the embedding associated
to ν and let ψ : AΓ ↪→ H be an extension of σ (i.e., ψ(x) = σ(x) for all x ∈ kΓ).
Then

ψ(Γ(2)) ⊂ ψ(AΓ1) ⊂ H1,

where superscript 1 indicates the multiplicative subgroup of elements with reduced
norm 1. As tr γ ∈ Q,

tr γ = σ(tr γ) = ψ(γ + γ) = ψ(γ) + ψ(γ) = trψ(γ).

We conclude that tr γ ∈ trH1. But this is a contradiction because trH1 = [−2, 2]
and | tr γ| > 2. �

We now record two important corollaries of Theorem 4.25, the first geometric and
the second group theoretic.

Corollary 4.26. If M = H3/Γ is a finite volume hyperbolic 3-manifold for which Γ
satisfies the conditions of Theorem 4.25 then M contains no immersed totally geodesic
surfaces.

Corollary 4.27. If Γ is a Kleinian group of finite covolume which satisfies the con-
ditions of Theorem 4.25 then Γ contains no non-elementary Fuchsian groups.

Hyperbolic 3-manifolds whose fundamental groups satisfy the conditions of Theo-
rem 4.25 are actually quite common. Consider the Weeks manifold, defined in Section
4.3. In Theorem 4.23 we saw that the invariant trace field of the Weeks manifold is
a cubic number field with precisely one real place and one complex place. Condition
(1) of Theorem 4.25 is therefore satisfied. We also saw that the invariant quaternion
algebra of the Weeks manifold is ramified at the unique real place of kΓ, which means
that condition (2) is satisfied as well. We therefore conclude the following.

Corollary 4.28. The Weeks manifold contains no immersed totally geodesic surfaces.
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5. Orders in quaternion algebras: a first glimpse

In this section we introduce orders in quaternion algebras and explore some of
their basic properties. Our goal is to provide the background necessary to describe
the construction of discrete subgroups of PSL2(C) from orders in quaternion algebras
defined over certain number fields. This will allow us to give (finally!) the definition
of an arithmetic hyperbolic 3-manifold.

5.1. Defining orders. Let R be a Dedekind domain (i.e., R is an integral domain
which is noetherian, integrally closed and in which every prime ideal is maximal)
with quotient field K. In practice we will always take K to be a number field or its
completion at a finite prime and R to be its ring of integers. Let A be a quaternion
algebra over K.

Definition 5.1. An element α ∈ A is integral with respect to R if its (reduced)
characteristic polynomial x2 − tr(α)x+ n(α) has coefficients in R. We call tr(α) the
(reduced) trace of α and n(α) the (reduced) norm of α.

The reduced trace and norm of an element α ∈ A may be defined in a somewhat
different manner, as follows.

Let {1, i, j, ij} be the standard basis of A. Given an element α ∈ A we may write

α = a0 + a1i+ a2j + a3ij

for a0, a1, a2, a3 ∈ K.

Definition 5.2. Let A0 be the subspace of A spanned by {i, j, ij}. The elements of
A0 are called pure quaternions.

It is easy to check that the pure quaternions of A are characterized by the property
that they do not lie in K but their squares do. (In other words an element x ∈ A
lies in A0 if and only if x 6∈ K but x2 ∈ K.) In particular the property of being a
pure quaternion does not depend on the choice of basis. We may therefore uniquely
decompose any element α ∈ A as α = a0 + α′ where a0 ∈ K and α′ ∈ A0.

Definition 5.3. Given an element α ∈ A, we define the conjugate of α to be
α = a0 − α′.

The conjugation operation just defined equips A with an anti-involution such that

(1) x+ y = x+ y;
(2) xy = yx;
(3) x = x;
(4) rx = rx for all r ∈ R;
(5) If A = M2(K) then (

a b
c d

)
=

(
d −b
−c a

)
.

Definition 5.4. For α ∈ A we define the reduced trace tr(α) to be tr(α) = α + α
and the reduced norm n(α) to be n(α) = αα.
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Suppose now that {1, i, j, ij} is a standard basis for A where i2 = a and j2 = b.
Then if α = a0 + a1i+ a2j + a3ij we see that

tr(α) = 2a0

and
n(α) = a2

0 − aa2
1 − ba2

2 + aba2
3.

This means that α is integral precisely when 2a0, a
2
0 − aa2

1 − ba2
2 + aba2

3 ∈ R.
Recall that the set of all integral elements of a number field has the structure of

a ring (and importantly for what follows, a finitely generated Z-module). This is
certainly not the case for elements of quaternion algebras. Consider the following two
elements of M2(Q):

A =

(
5
4
−1

8
1
2

3
4

)
, B =

(
11
6

1
2

5
18

7
6

)
.

The characteristic polynomials of A and B are pA(x) = x2 − 2x + 1 and pB(x) =
x2− 3x+ 2. Thus both A and B are integral (with respect to Z). Neither A+B nor
AB are integral however; their characteristic polynomials are pA+B(x) = x2−5x+ 809

144

and pAB(x) = x2− 487
144
x+2. We shall see that the failure of the set of integral elements

in a quaternion algebra to be a ring makes the theory of orders in quaternion algebras
significantly more complicated than the study of orders in number fields. On the
other hand, this failure also makes the theory much richer. Indeed, it is precisely
what makes Vignéras construction of isospectral Riemann surfaces and hyperbolic
3-manifolds possible.

Definition 5.5. Let V be a vector space over K. An R-lattice in V is a finitely
generated R-module contained in V . An R-lattice L is complete if L⊗R K ∼= V .

The following is a basic result in commutative algebra.

Proposition 5.6 (Atiyah-Macdonald [2, Prop. 5.1]). An element α ∈ A is integral
if and only if R[α] is an R-lattice in A.

We are now able to provide our first definition of orders in quaternion algebras.

Definition 5.7. An order O in A is a complete R-lattice in A which is also a subring
of A. A maximal order is an order in A which is maximal with respect to inclusion.

Example 5.8. We give a few examples of orders.

(1) The ring M2(R) is always an order of M2(K).
(2) Suppose that A =

(
a,b
K

)
where a, b are integral elements of K. (Note that A

can always be put in this form as the Hilbert symbol is only defined up to
squares, meaning that we can ‘clear denominators’ by multiplying a, b by a
square element of K.) Then R[1, i, j, ij] is an order of A.

(3) Given a complete R-lattice I in A, the left and right orders of I are

O`(I) = {α ∈ A : αI ⊂ I},
Or(I) = {α ∈ A : Iα ⊂ I}.

Proposition 5.9. O is an order in A if and only if O is a ring of integral elements
in A which contains R and satisfies O⊗RK = A. Moreover, every order is contained
in a maximal order.
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Proof. Let O be an order of A and α ∈ O. Since O is an R-lattice, so is R[α]. It now
follows from Proposition 5.6 that α is integral. That O satisfies the other properties
follows from our definition of order.

We now prove the converse. Because O ⊗R K = A we may choose a basis
{x1, x2, x3, x4} of A for which all of the xi lie in O. As the reduced trace deter-
mines a non-singular symmetric bilinear form on A, d = det(tr(xixj)) 6= 0. Set
L = {

∑
aixi : ai ∈ R}. Then L ⊂ O because R ⊂ O and each of the xi ∈ O.

Suppose that α ∈ O with α =
∑
bixi with bi ∈ K. For each j we have that αxj ∈ O,

so tr(αxj) =
∑
bi tr(xixj) ∈ R. Therefore bi ∈ 1

d
R and O ⊂ 1

d
L. It follows that O

is finitely generated, proving the first assertion. The second assertion follows from a
Zorn’s lemma argument. �

Lemma 5.10. The order M2(R) is a maximal order of M2(K).

Proof. If M2(R) is not maximal then let O be a maximal order containing M2(R)

and some element

(
x y
z w

)
with at least one of x, y, z, w not in R. By adding and

multiplying elements of R we can produce an element α ∈ O where α =

(
a 0
0 1

)
and

a 6∈ R. Such an element is clearly not integral, a contradiction. �

We have shown that if O is an order in A then every element of O is integral. The
following proposition provides a converse to this statement.

Proposition 5.11. If α ∈ A is integral then α is contained in a maximal order of A.

Proof. If α ∈ R then α is in every order of A by Proposition 5.9. We may therefore
assume that α 6∈ R, in which case K(α) is a quadratic field extension of K which is
contained in A. Let β ∈ A∗ be such that βαβ−1 = α. The existence of such an element
is due to the Skolem-Noether theorem and we may take β to be integral by simply
clearing denominators. The R-module generated by α and β is R+Rα+Rβ +Rαβ
and is clearly an order of A. This order might not be maximal, but we have seen that
every order is contained in a maximal order. �

5.2. Orders in matrix algebras. We now consider the special case in which A =
M2(K). This case turns out to be particularly important in studying orders in quater-
nion algebras over number fields, as one would like to be able to work locally and at
all but finitely many primes a quaternion algebra (over a number field) is split.

Let V be a two-dimensional vector space over K with basis {e1, e2} so that we may
identify A with End(V ). Given a complete R-lattice L in V we define

End(L) = {σ ∈ End(V ) : σ(L) ⊂ L}.
Consider the complete R-lattice L0 = Re1+Re2, for which we have End(L0) = M2(R).
The lattice L0 also has the property that if L is a complete R-lattice then there is an
element a ∈ R such that

aL0 ⊂ L ⊂ a−1L0.

It follows that
a2 End(L0) ⊂ End(L) ⊂ a−2 End(L0).

Therefore each End(L) is an order. In fact, these are the maximal orders of End(V ).
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Lemma 5.12. If O is an order in End(V ) then there exists a complete R-lattice L
of V such that O ⊂ End(L).

Proof. Let L0 = Re1 + Re2 be as above and L = {` ∈ L0 : O` ⊂ L0}. Then L is an
R-submodule of L0 and in particular is finitely generated. Also, if a ∈ R is non-zero
with aEnd(L0) ⊂ O ⊂ a−1 End(L0) then for all ` ∈ L0 we have

Oa` ⊂ End(L0)` ⊂ L0,

hence a` ∈ L0. Thus aL0 ⊂ L. Therefore L is a complete R-lattice in V .
We now show that O ⊂ End(L). Let α ∈ O. For all ` ∈ L we have Oa` ⊂ O` ⊂ L0.

Therefore α` ∈ L and O ⊂ End(L). �

Corollary 5.13. If R is a PID then every maximal order in M2(K) is conjugate to
M2(R).

Proof. As above we identify M2(K) with End(V ) where V is a two-dimensional vector
space over K with basis {e1, e2}. Let L0 = Re1 + Re2 and O be a maximal order
of M2(K). Lemma 5.12 and the accompanying discussion shows that there exists a
complete R-lattice L in V such that O = End(L). Let {f1, f2} be a basis of V such
that L = Rf1 +Rf2 and define an element σ ∈ End(V ) by σ(e1) = f1 and σ(e2) = f2.
Then σ(L0) = L and End(L) = σ End(L0)σ−1; that is, End(L) = σM2(R)σ−1. In
particular O is conjugate to M2(R). �

Corollary 5.13 will be vitally important when we study orders in matrix algebras
over non-archimedean local fields, as the ring of integers of such a field is always a
PID. The corollary is also useful for studying quaternion orders over number fields
however. It implies for example, that M2(Z) is a maximal order of M2(Q).

When R is not a PID it is no longer the case that every complete R-lattice L is free
as an R-module. Something can still be said however, even in this level of generality.
First we recall a definition.

Definition 5.14. A fractional ideal I of R is an R-submodule of K such that there
exists an element r ∈ R with rI ⊂ R.

Suppose now that R is a Dedekind domain which is not necessarily a PID. The
structure theorem for finitely generated modules over a Dedekind domain gives us a
basis {x, y} of V and a fractional ideal I of K such that L = Rx + Iy. In terms of
matrices this means that End(L) is conjugate to

M2(R, I) =

{(
a b
c d

)
: a, d ∈ R, b ∈ I−1, c ∈ I

}
.

5.3. Orders in local division algebras. In this section we let K = kv be a p-adic
field, R = OK and π be a local uniformizer. We saw in Section 3.5 that over K
there are precisely 2 isomorphism classes of quaternion algebras over K: M2(K) and(
u,π
K

)
, where K(

√
u) is the unique unramified quadratic extension of K. Because R

is a PID, Corollary 5.13 implies that every maximal order of M2(K) is conjugate to
M2(R). In this section we will discuss maximal orders in

(
u,π
k

)
and find that in this

case there is a unique maximal order.

Definition 5.15. If F is a field then a discrete valuation ν : F −→ Z ∪ {∞} is a
surjective map such that for all x, y ∈ F :
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(1) ν(x) =∞ if and only if x = 0;
(2) ν(xy) = ν(x) + ν(y);
(3) ν(x+ y) ≥ min{ν(x), ν(y)}.

In the setting we are considering, K is a p-adic field equipped with the exponential
p-adic valuation νK . Given an element x ∈ K there is a unique integer m such that
x = uπm for some unit u ∈ O∗K . In this case νK(x) = m.

Our goal is to show that the valuation νK on K may be extended to a “non-
commutative” valuation on the unique quaternion division algebra

(
u,π
K

)
over K.

Before doing it is useful to recall that if L/K is a finite extension then L is also a
p-adic field and that there is a unique extension of νK to a valuation νL on L with
respect to which L is complete via the formula

νL(x) =
1

f
· νK(NL/K(x)),

where NL/K denotes the field norm on the extension L/K and f = f(L/K) the
corresponding inertia degree. (Recall that the inertia degree is defined to be the
degree of the corresponding extension of residue fields: [OL/πLOL : OK/πKOK ].)

We now define a valuation w on
(
u,π
K

)
. Let x ∈

(
u,π
K

)
and define

w(x) = νK(n(x)),

where n(x) is the reduced norm of x. The restriction of w to
(
u,π
K

)∗
gives a homo-

morphism to Z such that w|K = 2νK , as

w(y) = w(n(y)) = νK(y2) = νK(y) + νK(y) = 2νK(y)

for all y ∈ K. Here we have used the fact that the reduced norm on
(
u,π
K

)
is multiplica-

tive. Moreover, if L/K is a quadratic field extension and L ⊂
(
u,π
K

)
then the reduced

norm of an element ` ∈ L coincides with the field norm NL/K(`). The restriction of w
to L therefore defines a valuation on L which is equivalent to the extended valuation
νL. In particular if we denote by O the set of elements of

(
u,π
k

)
whose valuations with

respect to w are non-negative, then x ∈ O implies that x ∈ OL where L = K(x).
Conversely, if x ∈

(
u,π
K

)
is integral, then n(x) ∈ OK , hence w(x) = νK(n(x)) ≥ 0 and

x ∈ O. It follows that O is the ring consisting of all integral elements of
(
u,π
K

)
.

Now suppose that y ∈
(
u,π
K

)
. Writing y in terms of the standard {1, i, j, ij} basis

and clearing denominators shows that there exists r ∈ OK such that ry ∈ O, hence

O ⊗OK
K ∼=

(u, π
K

)
and O is an order by Proposition 5.9. Every order is contained in a maximal order,
which by definition may contain only integral elements. As O already contains all
integral elements of

(
u,π
K

)
, we conclude that it must be the unique maximal order of(

u,π
K

)
.

Theorem 5.16. If K is a p-adic field and A is the unique quaternion division algebra
over K, then the set of all integral elements of A is the unique maximal order of A.
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5.4. A preview: type numbers. Much of the discussion in Section 5.2 was focused
on conjugacy classes of maximal orders in quaternion matrix algebras, while in Section
5.3 we saw that the unique quaternion division algebra over a p-adic field contains a
unique maximal order. In this section we let R be a Dedekind domain with quotient
field K and A a quaternion algebra over K.

Suppose that O1 and O2 are orders in A that are isomorphic via some isomorphism
f : O1 → O2. Via extension of scalars the map f induces an isomorphism f̂ :
O1 ⊗R K → O2 ⊗R K for which f̂(x) = f(x) for all x ∈ O1. Because O1 and O2

are orders in A, O1 ⊗R K ∼= A ∼= O2 ⊗R K. Therefore f̂ is an automorphism of A
and is therefore given by conjugation by an element a ∈ A∗ by the Skolem-Noether
theorem. In particular O2 = aO1a

−1. The moral is that in a quaternion algebra two
orders are isomorphic if and only if they are conjugate.

Definition 5.17. The type number of a quaternion algebra is the number of con-
jugacy classes of maximal orders.

As was mentioned earlier, the two situations we are most interested in are when
K is a number field or a p-adic field. In the latter case the type number is always
one. Indeed, there are only two isomorphism classes of quaternion algebras over a
non-archimedean local field (M2(K) or the unique quaternion division algebra) and
we have shown in Section 5.2 that M2(K) has type number one. In Section 5.3 we saw
that the unique quaternion division algebra over a p-adic field has an even stronger
property: the set of all R-integral elements has the structure of an order which by
necessity is the unique maximal order. It therefore has type number one as well.

The situation is much more nuanced for quaternion algebras over number fields
and its calculation is in some ways reminiscent of the study of the class number. In
this case the type number is always finite (which is not a priori obvious), though it
can be arbitrarily large. When A is unramified at an archimedean prime of K we will
see that the type number is actually always a power of 2.

The type number of a quaternion algebra over a number field plays a crucial role in
Vignéras construction of isospectral hyperbolic 3-manifolds, as well as in applications
to other fields like modular forms. We will study this quantity in some depth in later
lectures. For now we merely state a general result.

Theorem 5.18. If K is a local or global field and A is a quaternion algebra over K
then the type number of A is finite.

Type numbers are very easy to compute using Magma.

Example 5.19. Let k = Q(
√
−10) and consider the quaternion algebra A =

(−1,−3
k

)
.

We will show that the type number of A is 2 and compute generating sets for repre-
sentatives of the two conjugacy classes of maximal orders of A (considered as modules
over Ok).

> k<t>:=QuadraticField(-10);

> t^2;

-10

> A<i,j,ij>:=QuaternionAlgebra<k|-1,-3>;

> C:=ConjugacyClasses(MaximalOrder(A));
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> #C;

2

IsConjugate(C[1],C[2]);

false

> Generators(C[1]);

[ 1, i, 1/2*i + 1/2*j, 1/2 + 1/2*t*i + 1/6*t*j + 1/6*ij ]

> Generators(C[2]);

[ 1, 2*i, 3*t*i, 1 + 1/2*i + 1/2*j, 1/2*(t + 2) + 1/4*(t + 2)*i + 1/4*(t

+ 2)*j, 1/2*(t + 1) + 1/4*(t + 4)*i - 1/12*t*j + 1/6*ij ]

Example 5.20. Corollary 5.13 showed that if Ok is a PID then the type number of
M2(k) is one. The ring of integers Ok is a PID if and only if k has class number
one, so the corollary proves that the type number of M2(k) coincides with the class
number h of k when h = 1. The discussion following the proof of Corollary 5.13
provides intuition for something that we will provide a short proof of once we have
more techniques at our disposal: the type number of M2(k) always coincides with the
cardinality of the ideal class group of k modulo squares (for any choice of number
field k). In particular if k has class number 2 then the type number of M2(k) is 2 as
well.

As in the previous example, let k = Q(
√
−10). This time however, let A = M2(k),

or in terms of Hilbert symbols let A =
(

1,1
k

)
. In this case k has class number 2. We

will use Magma to show that A has type number 2, as was asserted above.

> k<t>:=QuadraticField(-10);

> ClassNumber(k);

2

> A<i,j,ij>:=QuaternionAlgebra<k|1,1>;

> #ConjugacyClasses(MaximalOrder(A));

2
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6. Arithmetic Kleinian groups

In this section we will construct discrete subgroups of PSL2(C) from orders in
quaternion algebras and relate the geometric properties of the resulting Kleinian
groups to algebraic properties of the associated quaternion algebras. This will allow
us to define what it means for a Kleinian group to be arithmetic. We will conclude
by showing that the invariant trace field and quaternion algebra are complete com-
mensurability invariants of arithmetic Kleinian groups.

Throughout this section we will employ the following notation. Let k be a number
field with ring of integers Ok and A be a quaternion algebra over k. An order O
of A will always mean that O is an Ok-order of A. If B is a subring of A then we
will denote by B1 the multiplicative subgroup of B∗ generated by elements having
reduced norm 1.

Finally, we recall that Ram(A) (respectively Ramf (A) or Ram∞(A)) denotes the
set of all places of k (respectively finite or infinite) which ramify in A.

6.1. Discrete groups from orders in quaternion algebras. Let k be a number
field of degree n with a unique complex place ν. Recall that this just means that
of the n embeddings σ : k ↪→ C, the image σ(k) of k will lie in R for precisely
n− 2 embeddings. The other two embeddings will be given by ν and ν, the complex
conjugate of ν. Let S∞ denote the set of archimedean places of k.

Now suppose that A is a quaternion algebra over k which is ramified at all real
places of k. Recalling that there is always an isomorphism

A⊗Q R ∼=
⊕
v∈S∞

A⊗k kv,

we deduce that

(4) A⊗Q R ∼= Hn−2 ×M2(C).

Let ψ : A ↪→ M2(C) denote the composition of the natural embedding A ↪→ A⊗Q R
with the isomorphism in (4) and the projection map from Hn−2×M2(C) onto M2(C).

Theorem 6.1. Let O be a maximal order of A and ΓO = Pψ(O1) ⊂ PSL2(C).
(1) ΓO is a discrete subgroup of PSL2(C).
(2) The volume of H3/ΓO is given by

Vol(H3/ΓO) =
d

3/2
k ζk(2)

(4π2)[k:Q]−1
·

 ∏
p∈Ramf (A)

(N(p)− 1)

 ,

where dk is the absolute value of the discriminant of k and ζk(2) is the Dedekind
zeta function of k evaluated at s = 2.

Proof. For a proof that ΓO is discrete, see [36, Chapitre IV, Theoreme 1.1]. The
formula for the covolume of ΓO is due to Borel [4, Section 7.3]. �

We may now, at long last, define what it means for a Kleinian group to be arith-
metic.

Definition 6.2. Let k be a number field with a unique complex place, A a quaternion
algebra over k which is ramified at all real places of k and O a maximal order of A.
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A subgroup of PSL2(C) is an arithmetic Kleinian group if it is commensurable
with ΓO for some triple (k,A,O) as above.

The groups ΓO will be important enough in our discussion of arithmetic Kleinian
groups that it will be useful to provide them with a notation-free name. Henceforth
we will refer to groups of the form ΓO as arithmetic Kleinian groups of the
simplest type. Thus a subgroup of PSL2(C) is an arithmetic Kleinian group if and
only if it is commensurable to an arithmetic Kleinian group of the simplest type.

Recall that Wedderburn’s theorem tells us that if a quaternion algebra over k is not
isomorphic to M2(k) then it is a division algebra. In the context of quaternion algebras
A ramified at all real places of k, this means that A will fail to be a division algebra
if and only if k has no real places (i.e., k = Q(

√
−d) for some positive square-free

integer d) and A ∼= M2(Q(
√
−d)).

Example 6.3. Consider an imaginary quadratic field Q(
√
−d) with ring of integers Od.

In Lemma 5.10 we saw that M2(Od) is a maximal order in the quaternion algebra
M2(Q(

√
−d)). The group PSL2(Od) is called a Bianchi group. Every Bianchi group

contains the parabolic isometry z 7→ z+ 1 of Ĉ and is thus non-cocompact. In fact it
is well-known that the number of cusps of the Bianchi group associated to Q(

√
−d)

is equal to the ideal class number of Q(
√
−d). According to Theorem 6.1, PSL2(O3)

is the Bianchi group of smallest covolume. Using Magma it is easy to compute the
covolumes of Bianchi groups.

Table 1. Volumes of small Bianchi orbifolds

d Vol(H3/PSL2(Od))
1 0.30532186472574. . .
2 1.00384100334120. . .
3 0.16915693440160. . .
5 4.20396925947605. . .
6 5.18217289781959. . .
7 0.88891492781635. . .
10 9.81811844389802. . .
11 1.38260830790264. . .
13 13.9979614019778. . .
14 20.3513407500735. . .

Given a positive square-free integer d, the volume Vol(H3/PSL2(Od)) can be com-
puted in Magma with the following commands:

> RR := RealField();

> pi := Pi(RR);

> R<x>:=PolynomialRing(Rationals());

> k:=NumberField(x^2+d);

> Dk:=Abs(Discriminant(Integers(k)));

> Zeta:=Evaluate(LSeries(k),2);
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> Dk^(3/2)*Zeta/(4*pi^2);

While it is of course not necessary to use a computer algebra system to compute
the discriminant of a quadratic field, the above code can easily be modified in order
to compute the volume of arbitrary arithmetic Kleinian groups of the form ΓO. One
simply needs to replace x2 + d with the defining polynomial of k and remember to
account for the  ∏

p∈Ramf (A)

(N(p)− 1)


term appearing in Theorem 6.1, as this term is trivial in the case that A ∼= M2(k).

The following theorem relates the topology of an arithmetic hyperbolic 3-manifold
H3/Γ to the structure of an associated quaternion algebra.

Theorem 6.4. Let M = H3/Γ be an arithmetic hyperbolic 3-manifold and suppose
that Γ is commensurable with ΓO, where O is a maximal order in a quaternion algebra
A over a number field k. The following are equivalent:

(1) M is non-compact.
(2) k is an imaginary quadratic field and A ∼= M2(k).
(3) Γ is commensurable in the wide sense with a Bianchi group.

Proof. If Γ is not cocompact then neither is ΓO. Thus ΓO contains a parabolic el-
ement γ. As the element γ − Id is not invertible we may conclude that A is not a
division algebra. By Wedderburn’s theorem, A ∼= M2(k). We have already seen that a
maximal order of M2(k) will yield an arithmetic Kleinian group only if k is imaginary
quadratic. Therefore (1) implies (2). That (2) implies (3) follows from the definition
of a Bianchi group and the fact that maximal orders in the same quaternion algebra
will always yield arithmetic Kleinian groups which are commensurable. To prove that
(3) implies (1) we note that all Bianchi groups contain parabolic elements, hence Γ
will as well if Γ is commensurable in the wide sense to a Bianchi group. �

As a corollary of Theorem 6.4 we obtain the following.

Corollary 6.5. Let M = H3/Γ be an arithmetic hyperbolic 3-manifold and suppose
that Γ is commensurable with ΓO, where O is a maximal order in a quaternion algebra
A over a number field k. The manifold M is compact if and only if A is a division
algebra.

Theorem 6.6. Let Γ be a cocompact arithmetic Kleinian group of the simplest type.
Then the covolume of Γ is greater than 0.888 . . . This volume is achieved by ΓO
where O is a maximal order in the quaternion algebra over Q(

√
−7) ramified at the

two primes of norm 2.

Proof. In light of Theorem 6.1(2) it suffices to show that if ΓO arises from some (k,A)
with k 6= Q(

√
−7) then Vol(H3/ΓO) ≥ 0.889. This is sufficient because the choice of

division algebra A which will yield the smallest volume ΓO is clearly the one which is
ramified at the two primes of norm 2. (Since ramification at any other prime would
contribute to the volume of H3/ΓO by Theorem 6.1(2).)
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We will first show that if Vol(H3/ΓO) ≤ 0.889 then [k : Q] = 2. Let ζk(s) denote
the Dedekind zeta function of k. The Euler product expansion

ζk(s) =
∏
p

1

1−N(p)−s
,

where the product is taken over prime ideals of Ok, implies that ζk(2) ≥ 1. Every
prime ideal p of Ok satisfies N(p) ≥ 2, hence ∏

p∈Ramf (A)

(N(p)− 1)

 ≥ 1

as well. Theorem 6.1(2) now implies that

Vol(H3/ΓO) ≥ d
3/2
k

4π2
.

We are therefore assuming that

0.889 ≥ Vol(H3/ΓO) ≥ d
3/2
k

4π2
,

whence 10.720 ≥ dk. There are only four number fields with absolute value of dis-
criminant less than 11 which also have a unique complex place and all of these fields
are imaginary quadratic. Note that claims like this can be proven in at least two
different ways. On the one hand this is the type of claim that can be proven using
Odlyzko discriminant bounds [28]. When the discriminant is very small however, it is
easier to use (provably complete in the appropriate range) databases of number fields
of small discriminant (c.f. [10]).

Observe that if ΓO is a cocompact arithmetic Kleinian group of the simplest type
which arises from (k,A) then A is a division algebra by Corollary 6.5. In particular
this means that if k is an imaginary quadratic field then A is ramified at at least two
finite primes. It follows from the volume formula that over each of the four imagi-
nary quadratic fields with absolute value of discriminant less than 11, the cocompact
arithmetic Kleinian group of the simplest type will be ramified at the two primes of
smallest norm in the field. We now compute with Magma the corresponding volume
of H3/ΓO. This yields the data in Table 2 and concludes our proof. �

Table 2. Small cocompact arithmetic Kleinian groups of the simplest type

k = Q(
√
−d) Norms of two smallest primes of Ok Vol(H3/ΓO)

Q(
√
−1) 2,5 1.221287458902. . .

Q(
√
−2) 2,3 2.007682006682. . .

Q(
√
−3) 3,4 1.014941606409. . .

Q(
√
−7) 2,2 0.888914927816. . .
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6.2. A second characterization of arithmeticity. In Section 6.1 we defined arith-
metic Kleinian groups. Our definition was in terms of commensurability; namely, a
Kleinian group Γ is arithmetic if and only if it is commensurable with a group of the
form ΓO = Pψ(O1), where O is a maximal order in a quaternion algebra A (rami-
fied at all real places) over a number field k having a unique complex place. Here ψ
denotes the natural map A ↪→ A⊗k C→ M2(C).

We begin this section by identifying the invariant trace fields kΓ and quaternion
algebras AΓ of an arithmetic Kleinian group of the simplest type ΓO. Recall that
these were defined as kΓ = Q(tr Γ(2)) and

AΓ =
{∑

aiγi : ai ∈ kΓ, γi ∈ Γ(2)
}
,

where Γ(2) is the subgroup of Γ generated by squares.

Theorem 6.7. Let Γ be an arithmetic Kleinian group which is commensurable to
ΓO = Pψ(O1), where O is a maximal order in a quaternion algebra A defined over
the field k and satisfies the conditions above. Then kΓ = k and AΓ = ψ(A).

Proof. Because kΓ and AΓ are invariants of the commensurability class of Γ (Theorem
4.14 and Corollary 4.15) it suffices to prove the theorem for Γ = ΓO. We begin by

observing that Q(tr Γ
(2)
O ) ⊂ k, as every element of O is integral and thus has a reduced

trace lying in Ok ⊂ k. On the one hand Corollary 4.19 implies that the field Q(tr Γ
(2)
O )

is not totally real. On the other hand every subfield of k is totally real. (This is true
more generally: every subfield of a number field having a unique complex place is

totally real.) We conclude that k = Q(tr Γ
(2)
O ) = kΓO.

It remains to show that AΓ = ψ(A). Consider the quaternion algebra ψ(A). In
light of the previous paragraph it is a quaternion algebra over kΓO which obviously

contains A0Γ
(2)
O = AΓO (since A0Γ

(2)
O is generated over kΓ by elements of the form γ2

for γ ∈ O1 and these are by definition elements of ψ(A)). Because both algebras are
quaternion algebras over kΓO, a dimension count implies that AΓO = ψ(A). �

The following is an immediate corollary of Theorem 6.7.

Corollary 6.8. Two arithmetic Kleinian groups of the simplest type ΓO and ΓO′ are
commensurable if and only if O and O′ are maximal orders in the same quaternion
algebra, up to isomorphism. In particular distinct Bianchi groups are never commen-
surable.

We have now shown that the invariant trace field of an arithmetic Kleinian group
is a number field possessing a unique complex place and that the invariant quater-
nion algebra is a quaternion algebra over this number field which is ramified at all
real places. We make an additional observation about arithmetic Kleinian groups.
Suppose that Γ is such a group and γ ∈ Γ. There exists an integer n > 0 such that
γn ∈ ΓO for someO. It follows that tr γn ∈ Ok, hence tr γ satisfies a monic polynomial
with coefficients in Ok. Therefore tr γ is an algebraic integer and tr Γ ⊂ Ok.

The following result shows that arithmetic Kleinian groups are in fact characterized
by these properties.

Theorem 6.9. A finite-covolume Kleinian group Γ is arithmetic if and only if the
following conditions hold.
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(1) The field kΓ is a number field with a unique complex place.
(2) The algebra AΓ is ramified at all real places of kΓ.
(3) The element tr γ is an algebraic integer for all γ ∈ Γ.

Proof. The main ideas of the proof are exactly as in the proof of Theorem 4.3 and
rely on showing that the set

OΓ =
{∑

aiγi : ai ∈ OkΓ, γi ∈ Γ(2)
}

is an order of AΓ. For a full proof we refer the reader to [24, Theorem 8.3.2]. �

Our discussion of the Weeks manifold (in particular Theorem 4.23) now shows the
following.

Corollary 6.10. The Weeks manifold is arithmetic.

6.3. Complete commensurability invariants. Recall that we have shown (The-
orem 4.14 and Corollary 4.15) that the invariant trace field and quaternion algebra
are commensurability class invariants of finite-covolume Kleinian groups. It is not
in general the case that these are complete commensurability invariants however.
That is, it is not in general true that non-commensurable Kleinian groups will have
non-isomorphic invariant quaternion algebras. The following result shows that the
invariant trace field and quaternion algebra are complete commensurability class in-
variants when restricted to the class of arithmetic Kleinian groups.

Theorem 6.11. Let Γ1,Γ2 be arithmetic Kleinian groups. Then Γ1 and Γ2 are
commensurable in the wide sense if and only if kΓ1 = kΓ2 and there exists a kΓ1-
isomorphism φ : AΓ1 → AΓ2.

Proof. We begin by assuming that Γ1 and Γ2 are commensurable in the wide sense.
Let g ∈ SL2(C) be such that gΓ1g

−1 and Γ2 are directly commensurable. As traces
are invariant under conjugation and commensurable groups have identical invariant
trace fields, we see that kΓ1 = k (gΓ1g

−1) = kΓ2. The map

φ : AΓ1 → AΓ2

given by

φ
(∑

aiγi

)
=
∑

aigγig
−1

is moreover the required kΓ1-isomorphism.
Now suppose that conversely, kΓ1 = kΓ2 and that φ : AΓ1 → AΓ2 is a kΓ1-

isomorphism. The Skolem-Noether theorem implies that there exists an element
g ∈ AΓ∗2 such that φ(x) = gxg−1 for all x ∈ AΓ1. Then φ(OΓ1) is an order in
AΓ2. As Γi is commensurable with OΓ1

i for i = 1, 2 we conclude that gΓ1g
−1 is

commensurable with Γ2. �

The following is an immediate application of Theorem 6.11.

Corollary 6.12. The set of invariant trace fields of arithmetic Kleinian groups coin-
cides exactly with the set of number fields having a unique complex place. For every
such number field k there are infinitely many commensurability classes of arithmetic
Kleinian groups having k as their invariant trace field.
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6.4. A third characterization of arithmeticity. Thus far we have seen two def-
initions of arithmeticity. The first said that a Kleinian group of finite covolume is
arithmetic if it is commensurable to an arithmetic Kleinian group of the simplest
type (i.e., one of the form ΓO). This definition is of a constructive nature and is most
useful for showing that certain explicitly constructed Kleinian groups are arithmetic.
For instance we showed that the Bianchi groups were arithmetic in this manner.
The second definition (Theorem 6.9) said that a Kleinian group of finite covolume is
arithmetic if it satisfies three properties, two dealing with the structure of its invari-
ant trace field and quaternion algebra and the third asserting that all elements have
traces that are algebraic integers. This definition tends to be most useful in proving
the arithmeticity of Kleinian groups whose presentations are known. For instance we
showed that the Weeks manifold is arithmetic in this manner. In this brief section
we will give a third definition of arithmeticity; this one of a geometric nature.

Let Γ be a finite covolume subgroup of PSL2(C). The commensurator Comm(Γ)
of Γ is defined by

Comm(Γ) = {g ∈ PSL2(C) : gΓg−1 is commensurable with Γ}.

Theorem 6.13. If Γ is an arithmetic Kleinian group then Comm(Γ) = P (AΓ∗).

Proof. Commensurable groups have the same commensurator, hence we may assume
that Γ = ΓO for some maximal order O (subject to the usual constraints on k and A).
If g ∈ AΓ∗ then gOg−1 is also maximal order of AΓ and the groups ΓO and ΓgOg−1 =
gΓOg

−1 are commensurable. Therefore g ∈ Comm(Γ), and as g was arbitrary we have
P (AΓ∗) ⊂ Comm(Γ).

We now prove the reverse inclusion. Suppose that g ∈ Comm(Γ) and let Γ0 be a
non-elementary subgroup of Γ(2) such that we have the inclusion Γ0, gΓ0g

−1 ⊂ Γ(2).
Conjugation by g induces an automorphism of AΓ which by Skolem-Noether is given
by conjugation by an element x ∈ AΓ∗. Observing that

xγx−1 = gγg−1

for all γ ∈ Γ(2), we deduce that gx−1 ∈ Z(AΓ∗) = kΓ. It follows that g ∈ P (AΓ∗),
concluding the proof. �

Theorem 6.13 shows that if Γ is an arithmetic Kleinian group then Γ has infinite
index in its commensurator. Margulis’ celebrated arithmeticity theorem, on the other
hand, provides a converse to this result and provides us with our third characterization
of arithmeticity.

Theorem 6.14 (Margulis). A finite covolume Kleinian group is arithmetic if and
only if it has infinite index inside of its commensurator.
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7. Isospectral arithmetic hyperbolic 3-manifolds are commensurable

In this section we prove that compact arithmetic hyperbolic 3-manifolds which are
isospectral are necessarily commensurable, a result originally due to Reid [31].

Let M be a compact arithmetic hyperbolic 3-manifold and E(M) be the multiset
of eigenvalues of the Laplace-Beltrami operator acting on L2(M). We call E(M) the
Laplace eigenvalue spectrum of M . It is known that E(M) is a discrete, infinite
subset of the positive real numbers. If M and N are compact arithmetic hyperbolic
3-manifolds for which E(M) = E(N), then we say that M and N are isospectral.

We now define another geometric invariant of M . Let L(M) denote the multiset
of lengths of closed geodesics of M . We call L(M) the length spectrum of M . As
was the case with the Laplace eigenvalue spectrum of M , the length spectrum L(M)
is a discrete subset of the positive real numbers. If M and N are compact arithmetic
hyperbolic 3-manifolds for which L(M) = L(N), then we say that M and N are
length-isospectral.

Although the multiplicities of elements in L(M) contain an enormous amount of
information, we will oftentimes only need knowledge of L(M) as a set. For this reason
we define the weak length spectrum L(M) of M to be the set of lengths of closed
geodesics of M (i.e., without multiplicities).

In summary we have just defined three geometric invariants of M :

E(M) = {λ : λ is an eigenvalue of the Laplace-Beltrami operator of M},
L(M) = {` : ` is the length of a closed geodesic on M},
L(M) = {` : ` ∈ L(M)}.
We stress that whereas E(M) and L(M) are multisets, L(M) is a set and does not

contain elements with multiplicity greater than one.
The relationship between these invariants are given by the following theorems:

Theorem 7.1 (Kelmer [21]). Let M and N be compact hyperbolic 3-manifolds. If
L(M) = L(N) then E(M) = E(N).

On the other hand, an application of the Duistermaat-Guillemin trace formula [14]
(see also [29, Theorem 10.1]) provides a partial converse.

Theorem 7.2 (Duistermaat-Guillemin). Let M and N be compact hyperbolic 3-
manifolds. If E(M) = E(N) then L(M) = L(N).

We note that the Duistermaat-Guillemin trace formula is much more general than
the manner in which we have stated it and applies to compact locally symmetric
spaces. It is unknown whether or not the Laplace eigenvalue spectrum of a compact
hyperbolic 3-manifold determines the length spectrum with multiplicities. There are
examples of compact Riemannian manifolds with the same eigenvalue spectra but
different length spectra, though such examples are not hyperbolic.

7.1. Fields generated by eigenvalues. We have already seen that the field gen-
erated over Q(tr Γ) by the eigenvalues of a loxodromic element of a finite-covolume
Kleinian group has degree at most 2. We now study these fields in more detail.

Lemma 7.3. Let Γ be a Kleinian group with finite-covolume and assume that kΓ =
Q(tr Γ). For all nontrivial elements γ ∈ Γ the field kΓ(λγ) embeds into A0Γ.
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Proof. If the characteristic polynomial of γ splits over kΓ then λγ ∈ kΓ and the lemma
is obvious. Suppose therefore that the characteristic polynomial is an irreducible
quadratic polynomial and define a subalgebra B of A0Γ by

B = {a+ bγ : a, b ∈ kΓ}.
It is clear that B is a commutative subalgebra of A0Γ which properly contains kΓ. It
follows that B is a quadratic field extension of kΓ and that kΓ(λγ) embeds into A0Γ
via the map λγ 7→ γ. �

Note that we have already seen many examples of groups which satisfy the hy-
pothesis of Lemma 7.3. For instance, if Γ is a finite-index subgroup of ΓO then
k = kΓ = Q(tr Γ) and A0Γ = AΓ = A.

Because we will be making repeated use of embeddings of quadratic extensions into
quaternion algebras we recall the important consequence of the Albert-Brauer-Hasse-
Noether theorem.

Theorem 7.4 (Albert-Brauer-Hasse-Noether). Let k be a number field and A a
quaternion algebra over k. Let L be a quadratic field extension of k. The follow-
ing are equivalent.

(1) L embeds into A.
(2) A⊗k L ∼= M2(L) .
(3) No place of k that ramifies in A splits in L/k.

Corollary 7.5. Let Γ be a Kleinian group with finite-covolume and assume that
kΓ = Q(tr Γ). If γ ∈ Γ is nontrivial then A0Γ admits an embedding of kΓ(λγ).

Proof. If A0Γ is a division algebra then this follows from Lemma 7.3 and Theorem
7.4. If A0Γ is not a division algebra then A0Γ ∼= M2(kΓ) and therefore admits an
embedding of every quadratic extension of kΓ. �

Lemma 7.6. Let ΓO be an arithmetic Kleinian group of the simplest type and Γ be
a finite index subgroup of ΓO. If γ ∈ Γ is loxodromic then [k(λγ) : k] = 2.

Proof. We have already seen that this holds when A is a division algebra. Assume
therefore that A = M2(k). Because A must ramify at all real places of k it follows that
k = Q(

√
−d) for some square-free integer d > 0. As tr γ = λγ + λ−1

γ is an algebraic

integer, λγ is a unit. If [k(λγ) : k] = 1 then λγ ∈ k. The only units in Q(
√
−d) are

roots of unity however, which contradicts the fact that γ is loxodromic. �

We now prove an important theorem that will allow us to construct loxodromic
elements from quadratic extensions of quaternion algebras.

Theorem 7.7. Let k be a number field with a unique complex place and A a quater-
nion algebra over k which is ramified at all real places of k. Let L be a quadratic field
extension of k. There is an embedding of L into A if and only if there is a maximal
order O of A and element γ ∈ O1 with infinite order such that L = k(λγ).

Proof. If such a γ exists then it is clear that L embeds into A via the map induced
by γ 7→ λγ. For the converse suppose that L embeds into A. Because k has a unique
complex place, Dirichlet’s Unit Theorem implies that O∗L has rank over Z strictly
greater than O∗k. In particular there exists an element y ∈ O∗L such that yn 6∈ O∗k for
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any n ≥ 1. Let σ denote the nontrivial element of Gal(L/k) and define u = y/σ(y)
so that NL/k(u) = 1 and un 6∈ O∗k for any n ≥ 1. (If yn = tσ(y)n for some t ∈ k then
applying σ to both sides of the equation and using the fact that σ has order 2 implies
that t = ±1 and yn ∈ k for some n, a contradiction. ) We conclude that L = k(un)
for every n ≥ 1.

Since L embeds into A there exists a maximal order O of A which contains OL.
The restriction of the reduced norm of A to L is the usual field norm NL/k, hence
u ∈ O1 and γ = P (ψ(u)) ∈ ΓO has infinite order. �

Corollary 7.8. Let Γ be a Kleinian group which is contained in an arithmetic Kleinian
group ΓO of the simplest type. Let L be a quadratic field extension of k. Then L em-
beds into A if and only if Γ contains an element γ of infinite order with L = k(λγ).

Proof. Let γ be as in Theorem 7.7 and m be such that γm ∈ Γ. Then L = k(um) =
k(λγm). �

7.2. The weak length spectrum determines the invariant trace field and
invariant quaternion algebra. We can now prove that the Laplace eigenvalue
spectrum of a compact arithmetic hyperbolic 3-manifold determines its commensu-
rability class. In light of Theorem 7.2 it suffices to prove the following even stronger
result.

Theorem 7.9. Let M,N be compact hyperbolic 3-manifolds of finite volume and
assume that M is arithmetic. If L(M) = L(N) then N is arithmetic and M and N
are commensurable.

Our proof will make use of the following lemma, the proof of which follows from
Theorem 7.4 and Corollary 3.32.

Lemma 7.10. Let k be a field with a number field with a unique complex place and
A1, A2 quaternion algebras over k. If a quadratic field extension of k embeds into A1

if and only if it embeds into A2 then A1
∼= A2.

We now prove Theorem 7.9.

Proof. Write M = H3/ΓM and N = H3/ΓN . Since M and N are isospectral the
formula relating the length of a geodesic to the trace of the associated loxodromic
element implies that the fields Q(tr γ2 = (tr γ)2− 2 : γ ∈ ΓM) and Q(tr γ2 = (tr γ)2−
2 : γ ∈ ΓN) coincide. Denote these fields by k. Let AM and AN be the invariant
quaternion algebras of M and N . We claim that any quadratic field extension L of k
that embeds into AM embeds into AN and vice versa.

Suppose that L embeds into AM . Then Theorem 7.7 and its corollary show that
there is a maximal order O of AM and an element u ∈ O1 such that L = k(u). Since
ΓM and ΓO are commensurable, P (ψ(um)) ∈ ΓM for some m ≥ 1. By hypothesis
there exists an element γ ∈ ΓN such that tr γ = ± trψ(um). Then k(λγ) = k(λu) = L
embeds into AN as required, and the claim follows from Lemma 7.10.

We have shown that the invariant trace fields and invariant quaternion algebras
of ΓM and ΓN coincide, hence it remains only to show that N is arithmetic as the
theorem will then follow from Theorem 6.11. To show that N is arithmetic we will use
Theorem 6.9. We have already seen that kΓN is a number field with a unique complex
place and that AΓN is ramified at all real places of kΓN (because these coincide with
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the invariant trace field and invariant quaternion algebra of M , which satisfies these
properties). Let γ ∈ ΓN . We must show that tr γ is an algebraic integer. As N is
a compact hyperbolic 3-manifold γ must be loxodromic, and there exists an element
γ′ ∈ ΓM such that tr γ = ± tr γ′. The arithmeticity of M implies that tr γ′ is an
algebraic integer, hence so is tr γ. �
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8. A construction of Vignéras: Examples of isospectral hyperbolic
3-manifolds

In this section we will construct pairs of arithmetic hyperbolic 3-manifolds with
the same Laplace eigenvalue spectrum. Our method is originally due Vignéras [35].
We will in fact see that the hyperbolic 3-manifolds we construct will have the same
length spectrum and will even be strongly isospectral; that is, they will have the
same eigenvalue spectrum with respect to any natural, self-adjoint elliptic differential
operator, e.g., the Laplacian acting on p-forms.

8.1. Generalities on isospectrality. Let G be a semisimple Lie group and Γ a
discrete cocompact subgroup of G. Denote by L2(Γ\G) the space of square-integrable
functions on Γ\G with respect to the Haar measure induced from G and by Cc(G)
the space of infinitely differentiable, complex valued, compactly-supported functions
on G. We define a unitary operator RΓ of G in L2(Γ\G) by

(RΓ(g)f)(x) = f(xg)

where f ∈ L2(Γ\G), x ∈ Γ\G, and g ∈ G. If Γ′ is another discrete, cocompact
subgroup of G then we say that Γ and Γ′ are representation equivalent if there
exists a unitary isomorphism T : L2(Γ\G)→ L2(Γ′\G) for which

T (RΓ(g)f) = RΓ′(g)T (f)

for all g ∈ G and f ∈ L2(Γ\G).
It is well-known that representation equivalence implies isospectrality with respect

to the Laplace spectrum. In fact, it is a theorem of DeTurck and Gordon [12] that
representation equivalence implies strong isospectrality.

Theorem 8.1 (DeTurck and Gordon). Let G be a Lie group which acts on a Riemann-
ian manifold M by isometries. Suppose that Γ,Γ′ ≤ G act properly discontinuously
on M . If Γ and Γ′ are representation equivalent then Γ\M and Γ′\M are strongly
isospectral.

Let φ ∈ Cc(G) and define the operator RΓ(φ) on L2(Γ\G) by

(RΓ(φ)f)(x) =

∫
G

φ(g)f(xg)dg.

This operator satisfies the Selberg Trace Formula:

Theorem 8.2 (Selberg Trace Formula). We have

trRΓ(φ) =
∑

[γ]∈AΓ

∫
C(γ,Γ)\G

φ(g−1γg)dg,

where AΓ denotes the set of conjugacy classes of elements in Γ and C(γ,Γ) is the
centralizer in Γ of γ.

Note that RΓ is determined by its trace. This is essentially due to Dixmier [13]
and uses the fact that RΓ decomposes as a discrete sum with finite multiplicities
of irreducible unitary representations of G. The idea is as follows. Let (πi) be a
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collection of irreducible unitary representations of G such that for every Φ ∈ Cc(G)
we have ∑

mi trπi(Φ) =
∑

ni trπi(Φ).

Suppose that there is some i for which mi 6= ni. Without loss of generality we may
suppose that mi > 0 and ni = 0. According to Dixmier [13, Propositions 5.3.1 and
6.6.5], the representations

∑
mi tr πi and

∑
ni trπi are quasi-equivalent, a condition

that forces ni 6= 0.
Define the weight of a conjugacy class [γ] in Γ, for a measure on C(γ,Γ), to be

the volume vol(C(γ,Γ)\C(γ,G)). One then deduces the following from the Selberg
Trace Formula.

Theorem 8.3. If two discrete cocompact subgroups Γ,Γ′ ≤ G have the same number
of conjugacy classes of fixed weight and class in G, then Γ and Γ′ are representation
equivalent.

8.2. Spectra of arithmetic Kleinian groups of the simplest type. We recall
the usual set-up. Let k be a number field containing a unique complex place and
A a quaternion division algebra over k which is ramified at all real places of k. Let
O,O′ be maximal orders of A and ΓO,ΓO′ the associated arithmetic Kleinian groups.
Corollary 6.5 shows that ΓO,ΓO′ are cocompact.

Because we are interested in constructed hyperbolic 3-manifolds, we need to ensure
that Pψ(A1) contains no nontrivial elements of finite order. Suppose therefore that
Pψ(A1) contained an element of order n. Then cos(π/n) ∈ k and k(eπi/n) is a
quadratic extension of k which embeds into A. There are only finitely many n ≥ 4 for
which [k(eπi/n) : Q] = 2[k : Q], hence by employing the Albert-Brauer-Hasse-Noether
theorem (Theorem 7.4) appropriately when constructing A via the set Ram(A) of
primes that ramify in A we may assume that Pψ(A1) is torsion-free. That ΓO,ΓO′
are torsion-free follows.

Given a group U and element x ∈ U , denote by [x]U the conjugacy class of x in U .
The following lemma is now clear.

Lemma 8.4. The embedding ψ of A1 into G = SL2(C) induces a bijection between
elements O1 \ {±1} and ΓO \ {±1}. Let x ∈ O1 \ {±1} so that γ = ψ(x) is the
corresponding element of ΓO \{±1}. The centralizer C(γ,Γ) corresponds to k(x)∩O1

and the conjugacy class [γ]G ∩ ΓO corresponds to [x]A ∩ O1.

Note that the field k(x) is a quadratic field extension of k which embeds into A and
Ω := k(x) ∩ O is a quadratic Ok-order of k(x) which is independent of the choice of
x in [x]O1 . We will call B the order of the conjugacy class of x. This discussion,
along with Theorems 8.1 and 8.3 and a result of Eichler [15, Theorem 2], allows us
to deduce the following.

Theorem 8.5. Suppose that O1 and O′1 have the same number of conjugacy classes
of elements with a fixed reduced trace and order, then ΓO\H3 and ΓO′\H3 are strongly
isospectral.

We have reduced our construction of isospectral hyperbolic 3-manifolds to the study
of the number of conjugacy classes of elements in a quaternion order with fixed reduced
trace. In order to simplify this problem even more we will make use of the following
fact, proven in [24, Theorem 12.4.5].
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Theorem 8.6. Let O be as above and assume that ΓO contains an element of trace
t0. Then the number of conjugacy classes in ΓO of elements of ΓO with trace t0 is
independent of the choice of maximal order O.

In light of Theorems 8.5 and 8.6 it suffices to show that if Ω is a quadratic Ok-order
which embeds into O then Ω embeds into O′ as well. Indeed, if Ω = Ok[x] then every
embedding of Ω into O determines (and is determined by) an element of O with the
same characteristic polynomial as x, the image in O of x.

Recall from Section 5.4 that the number of isomorphism classes of maximal orders
of A is called the type number of A. We will see in the next section that when
A ⊗Q R 6∼= H[k:Q], it is always the case that the type number is a power of two. In
particular, in the case we are considering above it makes sense to speak about Ω
embedding into 1

2
of the isomorphism classes of maximal orders of A. (This is of

course an abuse of language. It would be more correct to say that Ω embeds into
representatives of 1

2
of the isomorphism classes of maximal orders of A.)

The question of whether every maximal order of A admits an embedding of a fixed
quadratic order Ω has a long history which goes back to the work of Chevalley in
the 1930s. In 1999 Chinburg and Friedman [8] completely solved this problem and
showed that the proportion of isomorphism classes of maximal orders of A which
admit an embedding of Ω is equal to either 0, 1

2
or 1. In fact, their main theorem

gives necessary and sufficient conditions for each of these proportions to occur. One
of the results of their paper, which will be sufficient for our purposes, is the following.

Theorem 8.7 (Chinburg-Friedman). Let k be a number field and A a quaternion
algebra over k for which A⊗Q R 6∼= H[k:Q]. If A is ramified at a finite prime of k and
Ω is a quadratic Ok-order that embeds into a maximal order of A then every maximal
order of A admits an embedding of Ω.

We will prove Theorem 8.7 in Section 9 after discussing the type number of a
quaternion algebra in greater detail. From Theorem 8.7 and the discussion above we
conclude the following.

Theorem 8.8. Let k be a number field with a unique complex place and A a quater-
nion division algebra over k which ramifies at all real places of k. Let O,O′ be maximal
orders of A for which ΓO and ΓO′ are torsion-free. If A ramifies at a finite prime of
k then the manifolds ΓO\H3 and ΓO′\H3 are strongly isospectral.

Recalling that lengths of closed geodesics on a complete orientable hyperbolic 3-
manifold of finite volume correspond to conjugacy classes of loxodromic elements
in the associated Kleinian group, we similarly conclude the following result from
Theorems 8.6 and 8.7.

Theorem 8.9. Let k be a number field with a unique complex place and A a quater-
nion division algebra over k which ramifies at all real places of k. Let O,O′ be
maximal orders of A for which ΓO and ΓO′ are torsion-free. If A ramifies at a finite
prime of k then the manifolds ΓO\H3 and ΓO′\H3 have the same length spectra; i.e.,
L(ΓO\H3) = L(ΓO′\H3).

Remark 8.10. Recall that it is a theorem of Kelmer (Theorem 7.1) that if M and
N are two compact hyperbolic 3-manifolds with L(M) = L(N) then M and N are
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Laplace-isospectral. Theorem 8.9 therefore provides a second proof that ΓO\H3 and
ΓO′\H3 are Laplace-isospectral.

In order to make sure that the hyperbolic 3-manifolds we construct are not isometric
we first note that if ΓO\H3 and ΓO′\H3 were isometric then there would be an element
γ in PGL2(C) for which ΓO = γΓO′γ

−1. The following proposition shows that this in
turn proves that O and O′ are conjugate in A∗. In order to obtain manifolds which
are not isometric it therefore suffices to choose maximal orders which have different
types; that is, which are not conjugate in A∗.

Proposition 8.11. Let notation be as above and suppose that ΓO = γΓO′γ
−1 for

some γ ∈ PGL2(C). Then O and O′ are conjugate in A∗.

Proof. Let γ = P (c) where c ∈ GL2(C). Then ψ(A) = AΓO = AΓO′ , hence conjuga-
tion by c induces a k-automorphism of A via∑

aiγi 7→
∑

aicγic
−1

for ai ∈ k and γi ∈ ψ(O1). By the Skolem-Noether theorem this is an inner automor-
phism and there exists an element a ∈ A∗ such that aO1a−1 = O′1. Now consider the
order OΓO of ψ(A) defined by

Oψ(O1) :=
{∑

aiγi : ai ∈ Ok, γi ∈ ψ(O1)
}
.

Suppose that D is a maximal order of A for which ψ(D) contains Oψ(O1). If D 6= O
then [ΓO : Pψ(D ∩ O)1] > 1. But ψ(D ∩ O)1 ⊃ (Oψ(O1))1 ⊃ ψ(O1). Therefore
D = O and similarly, O′ is the unique maximal order of A for which Oψ(O′1) is
contained in ψ(O′). As ψ(a) conjugates Oψ(O1) to Oψ(O′1), a must conjugate O to
O′. �

8.3. An example. Let k = Q(
√
−5) and consider the ideals p1 = (11) and p2 =

(3 + 2
√
−10) of Q(

√
−5). These are both prime ideals and have norms 121 and 29

respectively. Let A be the quaternion division algebra over k defined by Ram(A) =

{p1, p2}. In terms of Hilbert symbols A is given by
(

44−11
√
−5,−38−6

√
−5

Q(
√
−5)

)
. All of this

can be verified with the following Magma code.

> k<t>:=QuadraticField(-5);

> Zk:=Integers(k);

> p1:=11*Zk;

> IsPrime(p1);

true

> p2:=(3+2*t)*Zk;

> IsPrime(p2);

true

> Norm(p1);

121

> Norm(p2);

29

> A:=QuaternionAlgebra(p1*p2);

> Basis(A);
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[ 1, i, j, k ]

> i:=Basis(A)[2];

> j:=Basis(A)[3];

> i^2;

(44-11*t)

> j^2;

(-38-6*t)

The prime ideal p1 = (11) splits completely in both k(
√
−1) and k(

√
−3), hence

Theorem 7.4 implies that neither of these extensions embeds into A. No other cy-
clotomic extension of k is quadratic, hence A contains no roots of unity other than
±1.

The type number of A is two, hence there exist maximal orders O and O′ of A
which are not conjugate.

> #ConjugacyClasses(MaximalOrder(A));

2

We have just shown that ΓO and ΓO′ are torsion-free. It now follows from Theo-
rem 8.8 and Proposition 8.11 that the arithmetic hyperbolic 3-manifolds ΓO\H3 and
ΓO′\H3 are strongly isospectral but not isometric.

We now use Theorem 6.1 to compute the volume of our isospectral hyperbolic
3-manifolds. (Weyl’s law implies that isospectral compact Riemmanian manifolds
always have the same volume.) In this case we have

dk = 20

and
ζk(2) = 1.85555689374712063476271341165 . . .

hence

Vol(ΓO\H3) = Vol(ΓO′\H3) =
203/2 · (1.8555 . . . ) · 120 · 28

4π2
= 14, 125.336712 . . .

Remark 8.12. Note the Mostow’s Rigidity Theorem implies that any isomorphism of
ΓO and ΓO′ would be induced by an isometry of ΓO\H3 and ΓO′\H3. It follows that our
strongly isospectral non-isometric hyperbolic 3-manifolds have non-isomorphic funda-
mental groups.
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9. Type numbers and a theorem of Chinburg and Friedman

Let k be a number field and A be a quaternion algebra over k for which A⊗Q R 6∼=
H[k:Q]. In this section we will construct a Galois extension kO of k with the property
that A contains precisely [kO : k] isomorphism classes of maximal orders. We will
then use this extension in order to prove Theorem 8.7, a crucial ingredient in Section
8’s construction of isospectral hyperbolic 3-manifolds.

9.1. The local-global correspondence for orders. Given a prime p of k (possibly
infinite) define Ap := A⊗k kp.

Let O be a maximal order of A. We define the completion of O at a prime p of k
by

Op =

{
O ⊗Ok

Okp if p is finite

O ⊗Ok
kp = Ap if p is infinite

An important fact that we will use many times is that if O is a maximal order of A
then Op is a maximal order of Ap for all finite primes p. For instance, if A = M2(Q)
then O = M2(Z) is a maximal order of A by Lemma 5.10. In this case Ap = M2(Qp)
and Op = M2(Zp), the latter of which is a maximal order by Lemma 5.10.

Let N (Op) denote the normalizer in A∗p of Op.
If p is an infinite prime then N (Op) = A∗p and n(N (Op)) = k∗p .
When p is a finite prime we have two cases to consider.
The first case is when p ramifies in A. In this case Ap is a division algebra and Op

is the unique maximal order of A. We thus have N (Op) = A∗p and n(N (Op)) = k∗p .
Now consider the case in which p splits in A. Corollary 5.13 shows that in this situa-

tion we must have Op conjugate to M2(Okp), hence N (Op) is conjugate to GL2(Okp)k∗p
and n(N (Op)) = O∗kp(k

∗
p)2.

We have just associated to every prime p of k a maximal order Op of Ap. The
local-global correspondence for orders provides a converse to this association.

Theorem 9.1 (Local-Global Correspondence). Suppose that we are given an order
O(p) of Ap for every finite prime p of k. If there exists an order O of A such that
Op = O(p) for all but finitely many primes then there exists a unique order O of A
for which Op = O(p) for all finite primes p of k. This order is given by

O =
⋂
p

A ∩ O(p).

For such an order O we have that O is a maximal order if and only if O(p) if maximal
for all finite primes p of k.

9.2. Type numbers and the idele group of a quaternion algebra. We define
the idele group JA of A as follows:

JA = {(xp) ∈
∏
p

A∗p : xp ∈ O∗p for almost all finite primes p}.

Notice that we have a map A∗ ↪→ JA given by y 7→ (y, y, . . . ). This map is called
the diagonal embedding and allows us to view A∗ as a subgroup of JA. Note also that
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because any two orders of A are locally equal at all but finitely many primes, the
definition of JA does not depend on the choice of maximal order O.

Given a maximal order O and idele x̃ = (xp) ∈ JA we define another maximal order
x̃Ox̃−1 (via the local-global correspondence) as being the unique maximal order of A
for which

(x̃Ox̃−1)p = xpOpx
−1
p

holds for all finite primes p. As this notation suggests, if x̃ ∈ A∗ ⊂ JA then x̃Ox̃−1 is
globally conjugate to O by the element x; that is, x̃Ox̃−1 = xOx−1.

Lemma 9.2. If O′ is a maximal order of A then O′ = x̃Ox̃−1 for some x̃ ∈ JA.

Proof. Let S be the set of primes p for which O′p 6= Op. This set is finite and satisfies
S ∩Ram(A) = ∅. Given a prime p ∈ S, note that Ap

∼= M2(kp) and that all maximal
orders of Ap are conjugate. Let ap be such that O′p = apOpa

−1
p . Now define an idele

x̃ = (xp) ∈ JA by

xp =

{
1 if p 6∈ S
ap if p ∈ S.

We now have O′ = x̃Ox̃−1 by the uniqueness of the local-global correspondence, as
both orders are locally equal at all finite primes of k. �

We have now defined a transitive action of JA on the set of maximal orders of A
by conjugation. The orbit of O under the subgroup A∗ of JA is simply the conjugacy
class of O in A∗, hence we have an induced action of A∗\JA on the conjugacy classes
of maximal orders of A. The stabilizer of the conjugacy class of O under this action
is

N (O) = JA ∩
∏
p

N (Op).

We summarize this discussion as a proposition.

Proposition 9.3. The set of conjugacy classes of maximal orders of A is in one to one
correspondence with the double coset space A∗\JA/N (O). Under this correspondence
two maximal orders O and O′ are conjugate if and only if there is an idele x̃ ∈ JA
such that O = x̃O′x̃−1 and A∗x̃N (O) = A∗N (O).

Another way of stating Proposition 9.3 is that the type number of A is the car-
dinality of A∗\JA/N (O). Observe that we may extend the reduced norm of A to
A∗\JA/N (O) as follows: n(A∗x̃N (O)) = k∗ · (n(xp)) · n(N (O)). This gives us a map

(5) n : A∗\JA/N (O) −→ k∗\Jk/n(N (O))

where Jk denotes the idele group of k. A consequence of the Strong Approximation
Theorem is that this map is in fact a bijection [22, Theorem 3.3].

Theorem 9.4. Let k be a number field and A be a quaternion algebra over k for
which A⊗Q R 6∼= H[k:Q]. The reduced norm map

n : A∗\JA/N (O) −→ k∗\Jk/n(N (O))

is a bijection.
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Let HO = k∗n(N (O)) and GO = Jk/HO. As Jk is abelian we have GO ∼=
k∗\Jk/n(N (O)). Because HO is an open subgroup of Jk with finite index there
is, by class field theory, a class field kO for which Gal(kO/k) ∼= GO. We will call kO
the type class field of O. Therefore the type number of A is equal to [kO : k]. The
following is a standard result of class field theory.

Proposition 9.5. A prime p of k (possibly infinite) is unramified in kO/k if and only
if O∗p ⊂ HO and splits completely if and only if k∗p ⊂ HO.

Proposition 9.5 and our computation of local normalizers in the beginning of this
section show that kO/k is unramified outside of the real places in Ram(A) and that
every finite prime of Ram(A) splits completely in kO/k. Because Jk ⊂ N (O), hence
J2
k ⊂ n(N (O)), the group GO has exponent 2. Putting all of this together we have

that kO is the maximal abelian extension of k which has exponent 2, is unramified
outside of the real places in Ram(A) and in which every finite prime of Ram(A) splits
completely.

Corollary 9.6. Let k be a number field and A be a quaternion algebra over k for
which A⊗Q R 6∼= H[k:Q]. The type number of A is 2t for some t ≥ 0.

Proof. We have seen that the type number of A is equal to the cardinality of GO
and have just shown that the latter group is a finite abelian group of exponent 2. It
follows that GO ∼= (Z/2Z)t for some t ≥ 0. The result follows. �

9.3. A more refined analysis of type class fields. In order to prove Theorem 8.7
we will need a more refined analysis of the type class field kO. We begin by proving
two lemmas which clarify the extend to which we can control the generators of the
group GO.

Lemma 9.7. The group GO = Jk/HO is generated by cosets having representatives
of the form epi = (1, . . . , 1, πpi , 1, . . . ). If S is any finite set of primes of k then the
elements {epi} can be chosen so that pi 6∈ S for all i.

Proof. The Chebotarev Density Theorem shows that every element of Gal(kO/k)
has infinitely many prime ideals in its preimage under the Artin map. As these
prime ideals correspond to ideles of the form epi = (1, . . . , 1, πpi , 1, . . . ), GO can be
represented by cosets having the correct form. Because each element of GO has
infinitely many such preimages and S is finite, we may take pi 6∈ S for all i. �

Lemma 9.8. Let L be a quadratic field extension of k and suppose that L 6⊂ kO.
Then GO is generated by cosets epiHO where pi splits in L/k for all i.

Proof. By the Chebotarev density theorem we may generate Gal(kOL/L) with the
Frobenius elements associated to primes of L having degree one over k (since the set
of primes of L with degree greater than one over k has density zero). As Gal(kOL/L)
is isomorphic to Gal(kO/k) via the map σ 7→ σ|kO , we may generate the latter group
with Frobenius elements associated to primes of k splitting completely in L/k. These
automorphisms correspond, via the Artin map, to the generators epiHO of GO. �

Theorem 9.9 (Chinburg-Friedman). Let k be a number field and A a quaternion
algebra over k for which A ⊗Q R 6∼= H[k:Q]. Let L be a quadratic field extension of k
and Ω ⊂ L a quadratic Ok-order. If A is ramified at a finite prime of k and Ω embeds
into a maximal order of A then every maximal order of A admits an embedding of Ω.
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Proof. We have two cases to consider. Suppose first that L 6⊂ kO and L ⊂ A. We
may assume, without loss of generality, that Ω ⊂ O. By Lemmas 9.7 and 9.8 we may
generate GO with coset representatives epiHO with all of the primes pi splitting in
L/k. Let p be one such prime pi. Because p splits in L/k, Theorem 7.4 implies that
p splits in A and there is a kp-isomorphism

fp : Ap → M2(kp)

for which

fp(L) ⊂
(
kp 0
0 kp

)
.

Consequently

fp(Ω) ⊂
(
Okp 0
0 Okp

)
.

Define two orders Dp and D′p of Ap by

Dp = f−1
p

((
Okp Okp
Okp Okp

))
, D′p = f−1

p

((
Okp π−1

p Okp
πpOkp Okp

))
and observe that Dp and D′p are conjugate by the matrix f−1

p

((
πkp 0
0 1

))
∈ GL2(kp).

Recall that GO ∼= (Z/2Z)t. Given an element γ = (γi) ∈ (Z/2Z)t, define an order Dγ
of A by

Dγp =


Dpi if p = pi and γi = 0

D′pi if p = pi and γi = 1

Opi otherwise.

Such an order exists by the local-global correspondence for orders. We have therefore
defined 2t maximal orders of A. We claim that these orders represent all 2t isomor-
phism classes of maximal orders of A. Indeed, Dγ and Dγ′ are conjugate if and only
if the idele x̃ ∈ JA for which Dγ = x̃Dγ′x̃−1 satisfies A∗x̃N (O) = A∗N (O) in the
double coset space A∗\JA/N (O). If γ 6= γ′ then the claim follows from Theorem 9.4
because

n

((
πkp 0
0 1

))
= πkp

and the pi were chosen so that epi = (1, . . . , 1, πkpi , 1, . . . ) is nontrivial in GO ∼=
k∗\Jk/n(N (O)). This proves that every maximal order of A is conjugate to one of
the Dγ. Because Ω is contained in all of the Dγ locally at all finite primes, the local-
global correspondence implies that Ω is contained in Dγ for all γ = (γi) ∈ (Z/2Z)t.
In particular every maximal order of A admits an embedding of Ω.

Suppose now that L ⊂ kO and let p be a finite prime of k which ramifies in A.
We have already seen that such a prime splits completely in kO/k. As L is a subfield
of kO, the prime p splits in L/k as well. Theorem 7.4 thus implies that L does not
embed into A, hence no maximal order of A admits an embedding of Ω. �
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10. Sizes of isospectral families of arithmetic hyperbolic 3-manifolds

In Sections 8 and 9 we constructed arithmetic hyperbolic 3-manifolds and devel-
oped the number theory necessary to prove that their isospectrality. Recall that our
examples were of the form {H3/ΓO,H

3/ΓO′} where O and O′ are maximal orders in
a suitable quaternion algebra A. Because Vignéras was the first to construct isospec-
tral hyperbolic manifolds in this manner [35], we will say that {H3/ΓO,H

3/ΓO′} arise
via Vignéras’ method. In order to ensure that our examples were not isometric,
we took O and O′ to be non-conjugate in A. It follows that a family of (pairwise)
isospectral non-isometric hyperbolic 3-manifolds constructed via Vignéras’ method
has cardinality bounded above by the type number of A. In this section we will use
the formula for the volume of arithmetic Kleinian groups of the simplest type in order
to prove that a family of isospectral non-isometric hyperbolic 3-manifolds of volume
V constructed via Vignéras’ method has cardinality at most cV 2 for some positive
constant c. Our proof will follow [23].

Theorem 10.1. The cardinality of a family of pairwise isospectral non-isometric
hyperbolic 3-manifolds of volume V constructed via Vignéras’ method is cV 2 for some
absolute constant c > 0.

The remainder of this section will be devoted to the proof of Theorem 10.1.
Consider a family H3/ΓO1 , . . . ,H

3/ΓOn of isospectral non-isometric hyperbolic 3-
manifolds of volume V arising from Vignéras’ method. Here O1, . . . ,On are pairwise
non-conjugate maximal orders in a quaternion algebra A defined over a number field
k where k has a unique complex place and A is ramified at all real places of k.

Recall that in Theorem 6.1 we saw that the volume of the manifolds H3/ΓOi
satisfy

V = Vol(H3/ΓOi
) =

d
3/2
k ζk(2)

(4π2)nk−2
·

 ∏
p∈Ramf (A)

(N(p)− 1)

 ,

where nk = [k : Q] and ζk(2) is the Dedekind zeta function of k evaluated at s = 2.
Employing the trivial bounds ζk(2) ≥ 1 and N(p) ≥ 2 for all primes p of k, we obtain
the inequality

(6) V ≥ d
3/2
k /(4π2)nk−2.

In Section 9 we proved the existence of an abelian extension kO/k whose degree is
equal to the type number of A. We moreover saw that kO is unramified outside of
the real places in Ram(A). In particular kO is contained in the narrow class field of
k and hence has degree over k at most hk2

nk−2 where hk is the class number of k. In
order to proceed we will require the following class number estimate [23, Lemma 3.1]:

Lemma 10.2. Let k be a number field with a unique complex place, degree nk, class
number hk and absolute value of discriminant dk. Then

hk ≤
242d

3/4
k

(1.64)nk−2
.

In light of Lemma 10.2 and the previous paragraph we see that the cardinality of a
family of isospectral non-isometric hyperbolic 3-manifolds of volume V arising from
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Vignéras’ method is at most 242(1.22)nk−2d
3/4
k . We will now simplify this expression,

as well as (6), by bounding nk in terms of dk. We will do so by employing the Odlyzko
discriminant bounds [28].

Theorem 10.3 (Odlyzko). Let k be a number field of signature (r1, r2), degree nk =
r1 + 2r2 and absolute value of discriminant dk. There is an absolute constant C > 0
such that

log(dk) ≥ r1 + nk(γ + log(4π))− C,
where γ = 0.57721 . . . is the Euler-Mascheroni constant.

In the case of interest to us the number field k has signature (nk − 2, 1), hence
Theorem 10.3 shows that there is an absolute constant C > 0 such that

(7) nk ≤ log(d
1/4
k ) + C.

Using equations (6) and (7) we see that

(8) V ≥ d
3/2
k /(4π2)nk−2 ≥ d

3/2
k /e4nk−8 ≥ C ′d

1/2
k

for some absolute constant C ′.
Using equation (7) we deduce that the cardinality of a family of isospectral non-

isometric hyperbolic 3-manifolds of volume V arising from Vignéras’ method is at
most

242(1.22)nk−2d
3/4
k ≤ 163dk.

Theorem 10.1 now follows from equation (8).
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11. Contrasting the methods of Vignéras and Sunada

In Section 8 we constructed isospectral arithmetic hyperbolic 3-manifolds using
what is now known as Vignéras’ method. In this section we will introduce a dif-
ferent method of constructing isospectral Riemannian manifolds: Sunada’s method.
Sunada’s method reduces the problem of constructing isospectral manifolds to a prob-
lem in finite group theory. Because of the elementary nature of Sunada’s method,
the majority of the known examples of isospectral Riemannian manifolds have been
constructed using it and its generalizations. We will conclude this section by showing
that the methods of Vignéras and Sunada are incompatible. In other words, isospec-
tral hyperbolic 3-manifolds constructed using Vignéras’ method can never arise via
Sunada’s method.

11.1. Sunada’s method. As was mentioned above, the idea behind Sunada’s method
is to reduce the construction of isospectral Riemannian manifolds to a problem in fi-
nite group theory. We begin with a definition.

Let G be a finite group and g ∈ G. We denote by [g] the G-conjugacy class of g.
We say that two subgroups H1, H2 of G are almost conjugate if

#(H1 ∩ [g]) = #(H2 ∩ [g])

for all g ∈ G.

Example 11.1. In the group G = S6, a pair of nonconjugate almost-conjugate sub-
groups are given by

H1 = {(1), (12)(34), (13)(24), (14)(23)}
and

H2 = {(1), (12)(34), (12)(56), (34)(56)}.

Theorem 11.2 (Sunada [34]). Let M be a closed Riemannian manifold, G a finite
group and

ϕ : π1(M) −→ G

a surjective homomorphism. If H1 and H2 are almost-conjugate subgroups of G then
the manifolds M/ϕ−1(H1) and M/ϕ−1(H2) are isospectral.

Remark 11.3. Sunada’s method actually produces manifolds that are not only isospec-
tral but which are in fact strongly isospectral.

Observe that isospectral manifolds arising via Sunada’s method are always com-
mensurable; that is, they always have a common, finite degree covering space: namely,
M . They furthermore always have a common, finite degree quotient manifold: namely,
M/G. As the latter property is not satisfied by isospectral manifolds arising via
Vignéras’ method and can therefore be used to show that the two methods are in-
compatible, we record these observations as a corollary.

Corollary 11.4. Isospectral manifolds arising via Sunada’s method are always com-
mensurable and always have a common, finite degree quotient manifold.

Before proving that the methods of Vignéras and Sunada are incompatible we will
apply Sunada’s method so as to construct isospectral hyperbolic 3-manifolds. To
that end, let M be a closed hyperbolic 3-manifold. A celebrated theorem of Agol [1,
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Theorem 9.2] shows that π1(M) is large; that is, π1(M) surjects onto a non-abelian
free group. In particular π1(M) surjects onto the free group on two generators and
hence onto any finite group generated by two elements. As the group S6 is generated
by two elements, we have a surjection

ϕ : π1(M)→ S6.

Let H1 and H2 be the subgroups of S6 given in Example 11.1. We conclude from
Theorem 11.2 that the quotient manifolds M/ϕ−1(H1) and M/ϕ−1(H2) are isospec-
tral.

11.2. Vignéras’ examples cannot arise from Sunada’s method. We now show
that the methods of Vignéras and Sunada are incompatible. Our proof will follow
that of Chen [6].

We begin with a lemma.

Lemma 11.5. Let k be a number field, A a quaternion algebra over k and O ⊂ A
a maximal order. If L is a subgroup of A1 containing O1 and [L : O1] < ∞ then
L = O1.

Proof. Let L = Ok[L] be the ring generated over Ok by L. Since [L : O1] < ∞ we
may write L =

⋃
giO1, hence L =

∑
Ok{giO1} is a finitely generated Ok-module

containing Ok[O1]; that is, L is an order of A. Since L1 contains L, which in turn
contains O1, we conclude, by maximality of O, that L = O1 = L. �

We now prove the section’s main result.

Theorem 11.6. Isospectral manifolds arising from Vignéras’ method do not have any
finite degree quotient manifolds in common (up to isometry). In particular isospectral
manifolds arising from Vignéras’ method never arise from Sunada’s method.

Proof. Let k be a number field with a unique complex place and A a quaternion
algebra over k in which all real places of k ramify. Let O and O′ be non-conjugate
maximal orders of A for which ΓO\H3 and ΓO′\H3 are Vignéras-isospectral hyperbolic
3-manifolds. Let N and N ′ be hyperbolic 3-manifolds which are isometric to ΓO\H3

and ΓO′\H3 and have a common finite degree quotient manifold Γ0\H3. Upon con-
jugation we may assume that ΓO, γΓO′γ

−1 ⊆ Γ0 for some γ ∈ PSL2(C). By Theorem
6.13 we have that γ ∈ P (ψ(A1)), hence Lemma 11.5 implies that Γ0 cannot contain
ΓO with finite index. This contradicts our assumption that ΓO\H3 has Γ0\H3 as a
finite degree quotient manifold, proving our result. �
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Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964.
[14] J. J. Duistermaat and V. W. Guillemin. The spectrum of positive elliptic operators and periodic

bicharacteristics. Invent. Math., 29(1):39–79, 1975.
[15] M. Eichler. Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über alge-

braischen Zahlkörper und ihre L-Reihen. J. Reine Angew. Math., 179:227–251, 1938.
[16] B. Everitt and C. Maclachlan. Constructing hyperbolic manifolds. In Computational and geo-

metric aspects of modern algebra (Edinburgh, 1998), volume 275 of London Math. Soc. Lecture
Note Ser., pages 78–86. Cambridge Univ. Press, Cambridge, 2000.

[17] David Gabai, Robert Meyerhoff, and Peter Milley. Minimum volume cusped hyperbolic three-
manifolds. J. Amer. Math. Soc., 22(4):1157–1215, 2009.

[18] Tsachik Gelander. Homotopy type and volume of locally symmetric manifolds. Duke Math. J.,
124(3):459–515, 2004.
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[36] M.F. Vignéras. Arithmétique des algèbres de quaternions. Lecture notes in mathematics. 1980.
[37] Jeffrey Renwick Weeks. HYPERBOLIC STRUCTURES ON THREE-MANIFOLDS (DEHN

SURGERY, KNOT, VOLUME). ProQuest LLC, Ann Arbor, MI, 1985. Thesis (Ph.D.)–
Princeton University.

Department of Mathematics, 530 Church Street, University of Michigan, Ann
Arbor, MI 48109


